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Abstract

Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping 
is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system 
architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes 
were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The 
RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured 
and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for 
model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident 
between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling 
plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict 
genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a 
scaling function substantially improved the prediction of architectures underlying the differently sized root systems. 
We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be 
included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research.

Key words: Lateral root branching, pea root system, phenotyping, root architecture model, root elongation rate, temporal 
scaling.

Introduction

A decrease in the upward trend of  yield since the 1990s is 
registered in major crops, including legumes. Among the 
suggested reasons are the increased frequency of  environ-
mental stresses ultimately limiting yield (Brisson et  al., 
2010; Lobell et  al., 2011). Therefore, new approaches 
to improve crop performance are required, particularly 

for resource-limited environments (Rijsberman, 2006; 
MacDonald et  al., 2011). This is challenging considering 
the limited historic yield progress under stress conditions 
compared with improvements under high-yielding envi-
ronments (Trethowan et  al., 2002). For three major leg-
umes, Varshney et  al. (2013) recently demonstrated that 
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improvements for semi-arid environments have been very 
low over the last five decades.

Plant phenotyping is expected to facilitate crop improve-
ment and stress resistance. Advances in imaging technology 
have led to high-throughput phenotyping platforms over-
coming limitations in phenotypic data collection within con-
ventional breeding (Passioura, 2012; Kuijken et  al., 2015). 
Current phenotyping platforms provide trait-based informa-
tion on basic and secondary plant traits including root system 
architecture (Zhu et al., 2011; Nagel et al., 2012; Fiorani and 
Schurr, 2013; Granier and Vile, 2014; Fahlgren et al., 2015).

In breeding, generally large numbers of candidate geno-
types have to be screened to determine phenotypic variability 
in a given target trait. Therefore, breeders require pheno-
typing approaches with sufficient throughput to cope with 
large screening populations (Dhondt et al., 2013). Sufficient 
throughput is particularly challenging when targeting the 
root system. Reviewing existing root phenotyping facilities, 
Zhu et al. (2011) conclude that ideally high throughput and 
resolution are combined. Most high-throughput root pheno-
typing is based on seedling plants grown on artificial media 
such as germination paper or agar (e.g. Bengough et  al., 
2004; Nagel et al., 2009; Christopher et al., 2013; Le Marié 
et  al., 2014). Larger scale phenotyping systems for mature 
plants have been used to assess root traits related to superior 
drought resistance (e.g. Puangbut et al., 2009; Gowda et al., 
2012). However, these set-ups are substantially less automa-
tized and require a high amount of manpower for a compara-
tively restricted throughput.

A key question in phenotyping is whether observations are 
platform specific or can be transferred to other environments, 
particularly soil-grown plants (Wasson et  al., 2012). For 
example, Wojciechowski et al. (2009) investigated root traits 
of wheat genotypes in gel chambers, soil-filled columns, and 
field experiments, and demonstrated a significant influence of 
the experimental system on ranking among genotypes. In con-
trast, Watt et al. (2013) found significant correlations between 
root traits of wheat seedlings growing either on moist germi-
nation paper or in situ. Beyond the influence of the medium, 
extrapolation over time from seedlings towards mature root 
systems is questionable (Watt et  al., 2013). However over-
lapping quantitative trait loci (QTLs) of seedling root traits 
and crop yield (e.g. Tuberosa et al., 2002) suggest that early-
stage phenotyping should have some predictive value towards 
mature plants.

For monocot species, prediction of the mature root systems 
from seedling plants is difficult considering the dominance of 
a secondary shoot-borne root system that emerges at tillering 
(Hochholdinger, 2009; Zobel and Waisel, 2010). In contrast, 
dicots feature the main components of the root system (tap 
root and basal roots with their respective laterals) already at 
the seedling stage. Thus, the mature root system of dicots can 
be considered an extension of these structures with increasing 
axes length and branching order (e.g. Fitter and Stickland, 
1992; Nielsen et al., 1997).

According to Hodge et  al. (2009), root systems can be 
described quantitatively by traits related to shape and struc-
ture. Several models on root system architecture (RSA) have 

been developed (Dunbabin et  al., 2013) to reproduce root 
system development from basic growth and branching rules 
and their modification by environmental stimuli (e.g. Pierret 
et al., 2007; Leitner et al., 2010). Until now, these models have 
been mainly used to assess root system functionality in terms 
of resource acquisition (e.g. water, Leitner et al., 2014; phos-
phorus, Schnepf et al., 2012) and underlying traits (e.g. dis-
tribution, Tron et al., 2015; anatomy, Couvreur et al., 2012, 
mycorrhiza: Schnepf et al., 2008).

In this study, we suggest RSA models as a tool to overcome 
the inference problem of high-throughput phenotyping plat-
forms. It is currently unknown to what extent root models 
can (i) reliably bridge between platforms differing in medium 
and accessed growing stage and (ii) improve predictions of 
breeding-relevant root traits of fully developed plants. We 
hypothesize that early-stage root traits from an agar-based 
phenotyping platform provide sufficient input parameters 
for model-based prediction of genotype ranking in mature 
root traits. Our study provides key root traits of pea (Pisum 
sativum L.) to be phenotyped for model-assisted extrapola-
tion from seedlings towards mature RSA. The overall aim is 
to integrate RSA modelling into the phenotyping pipeline—
allowing high-throughput phenotyping data to be translated 
into information relevant to breeding.

Materials and methods

Plant material
Sixteen cultivars of pea (Pisum sativum L.) were used for root phe-
notyping (Table  1). The cultivars originated from either Southern 
(Portugal and Spain) or Northern Europe (Estonia, Latvia, Norway, 
and Sweden) to represent the diversity of European pea cultivars; 
seeds were provided by partners within the EU FP7 Eurolegume 
project and by the Nordic gene bank.

Root phenotyping experiments
Measurements of root traits were performed on two phenotyping 
platforms. One system represents a typical high-throughput pheno-
typing platform for seedling root screening using agar-filled plates. 
The other system focuses on mature root systems grown under 
more natural conditions (sand-filled columns) with less potential 
throughput.

Seedling root phenotyping
Root growth and architecture of  seedling plants were monitored at 
the root phenotyping platform ‘GrowScreen-Agar’ at the Institute 
IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH (Nagel 
et al., 2009; Caliandro et al., 2013). Pea seeds were surface steri-
lized with sodium hypochlorite and then sown on sterile agarose 
(1%, w/w) containing one-third modified Hoagland solution in 
Petri dishes (120 × 120 × 17 mm) as described previously (Nagel 
et  al., 2009). Seeds were pushed slightly into the sterile agar 
through a hole (diameter 5 mm, one seed per Petri dish) at one 
side of  the otherwise sealed (Micropore, 3M Health Care, Neuss, 
Germany) Petri dishes. During germination, holes were covered 
with laboratory film (Parafilm, Pechiney Plastic Packaging) to 
keep the seeds moist. The Petri dishes were placed vertically in 
boxes to prevent light reaching the roots. In this way, the shoot 
could grow out through the hole, while roots grew inside the agar. 
Genotypes (16) were tested in 12 replicates, giving a total number 
of  192 Petri dishes which were transferred into a growth cabinet 
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(Bioline VB 1100 Vario; Vötsch Industrietechnik, Germany) at 
22/16 °C day/night temperature, 60% relative air humidity, a day-
length of  16  h, and a light intensity of  140  µmol m–2 s–1 [pho-
synthetically active radiation (PAR)]. For imaging, Petri dishes 
were placed in the phenotyping platform ‘GrowScreen-Agar’ and 
images of  each root system were taken automatically every second 
day via a high-resolution CCD camera (IPX-6 M3-TVM, Imperx 
Inc., Boca Raton, FL, USA). The experiment was stopped when 
the tap root reached the bottom of  the Petri dishes between 7 
d and 10 d after planting. Subsequently images were analysed 
using the software ‘GrowScreen-Root’ (Nagel et al., 2009), pro-
viding information on root morphology (length of  tap root and 
lateral roots) and RSA (number of  lateral branches, branching 
angle representing the angle between the tap root and branched 
lateral roots).

Mature root phenotyping
Mature root phenotyping experiments were conducted in a 
plastic foil greenhouse located at the Institute of  Agricultural 
Biotechnology of  BOKU in Tulln, Austria (48.33°N, 16.05°E). 
Seeds of  all cultivars were germinated in a growth chamber 
(Fitotron, Weiss-Gallenkamp, UK). Initial germination was con-
ducted in darkness at 22/16 °C day/night temperature, 60% relative 
air humidity, and daylength of  16 h; after the first seed germinated, 
light was turned on with an intensity of  300 µmol m–2 s–1 (PAR). 
Seeds were coated with a rhizobium suspension (Steinberga et al., 
2008) before being planted in 0.5 litre plastic bags (10 cm high) 
filled with washed quartz sand (0.7–1.2 mm in siz) amended with 
1 g of  slow-release fertilizer (Osmocote Pro 3-4M, Everris Int., 
The Netherlands). Seven to eight days after germination (DAG), 
eight similar-sized seedlings per cultivar were selected for trans-
planting. In the greenhouse, eight blocks of  16 plastic tubes (gen-
otypes) each were established in a complete randomized block 
design. The plastic tubes used as pots/growing cylinders were 108 
cm long and 20 cm in diameter (~32 litres); the bottom was sealed 
with a cap; holes covered with a glass fibre mat allowed for free 
drainage. Before tubes were filled with washed, 0.7–1.2 mm sized 
quartz sand, a plastic liner was installed in each tube allowing 
for undisturbed removal of  the whole substrate during harvest; 
the liner was perforated at the bottom 10 cm. Then 8.3 g of  an 
AMF inoculum (Glomus mosseae BEG95, G. intraradices, and G. 

geosporum BEG199; supplied by Dr Aleš Látr, Symbiom, Czech 
Republic) were added to each plant individual around the root sys-
tems at depths of  0–10 cm before the tube was filled to the brim 
with additional sand. The symbiont inoculation (rhizobia+AMF) 
approximates microbial-mediated nutrient acquisition in field envi-
ronments which can influence the shape of  root systems (Li et al., 
2016). An automated, pressure-compensated drip-irrigation sys-
tem was used to supply all plants with ample amounts of  water 
and a modified Long Ashton nutrient solution (Jia et al., 2004); 
amounts were adjusted to increasing plant size and weather condi-
tions. Numbers of  flowers per plant were counted every other day 
after observing the first flower. Plants were harvested in blocks at 
82 ± 2 d after transplanting at the end of  flowering (BBCH 69–71) 
when the root system is considered to be fully developed (Thorup-
Kristensen, 1998). After harvesting the shoots (data not shown), 
the plastic tubes were placed horizontally and the plastic liner was 
pulled out on a 1.5 mm mesh table. After cutting the plastic liner 
open, roots were manually excavated as described by Kashiwagi 
et al. (2005) and others. No roots reached the bottom of  the tube 
and few roots were discovered at the sides, indicating a rather 
unrestricting pot size. The uncovered root system was washed and 
rinsed in a bucket filled with clean tap water, photographed, and 
stored in a water-filled plastic bag at 4 °C until further analysis 
(1–3 weeks) took place (Hu et al., 2013). For in-depth architec-
tural and morphological analysis, the root systems of  5–7 plant 
individuals per cultivar were manually dissected into tap root and 
laterals. Laterals along the tap root and the tap root were sepa-
rated into the six depth classes 0–2.5, 2.5–5, 5–10, 10–20, 20–40, 
and 40–100 cm. The number of  lateral roots from each depth was 
counted. Subsamples of  lateral roots were scanned in water-filled 
trays (Epson Expression 10000XL; Epson, Japan) at 400 dpi, grey-
scale. Pictures were analysed for diameter, surface area, length, and 
volume with the PC program WinRhizo 2012b Pro (Régent Inst., 
Quebec, Canada).

Root simulation
Model description
The root architecture model RootBox (Leitner et al., 2010) describes 
the growth of individual root axes and their laterals. Each root con-
sists of a basal, a branching, and an apical zone (Fig. 1).

Table 1. Sixteen pea (Pisum sativum L.) cultivars used locally for food in different European countries and institutions donating the 
seeds for the experiment

Abbreviation Eurolegume 
number

Gene bank accession 
number

Local name Country
of origin

Donor institutiona

Estonia1 P58 EST2882 Eesti hall Estonia ECRI
Estonia2 P56 EST894 Eesti kollane söögihernes Estonia ECRI
Estonia3 P61 EST37 Jõgeva kirju Estonia ECRI
Estonia4 P65 EST41 Seko Estonia ECRI
Latvia1 P02  Alma Latvia SPPBI
Latvia2 P48  Bruno Latvia SPPBI
Latvia3 P12 k-4833 Stendes Hero Latvia SPPBI
Latvia4 P03  Retrija Latvia SPPBI
Norway1 P79 NGB10778 Aslaug Norway NordGen
Norway2 P82 NGB20045 Onkel Niels Norway NordGen
Portugal1 P53 Gp 3263 Portugal INIAV
Portugal2 P51 Gp 3491 Portugal INIAV
Portugal3 P52 Gp 3497 Portugal INIAV
Portugal4 P54 Grisel Portugal INIAV
Sweden1 P90 NGB 102513 Svalöf Butter Sweden JTI
Sweden2 P88 NGB 13138 Odalett Sweden JTI

a ECRI, Estonia Crop Research Institute; SPPBI, State Priekuli Plant Breeding Institute; NordGen, Nordic Genetic Resource Center; INIAV, 
Instituto Nacional de Investigação Agrária e Veterinária; JTI, Swedish Institute of Agricultural and Environmental Engineering.



968 | Zhao et al.

The root elongates according to negative exponential growth; that 
is, the length l of  the root at a certain time t is given by

 l t k e
r
k
t( ) = −

−
( )1  (1)

where k is the maximal length the root will reach, and r is the initial 
growth rate. After the basal zone and the apical zone have developed, 
lateral roots start to emerge at a fixed branching angle θ within the 
developing branching zone. The maximal length k of a root is given by

 k l l nob l= + + ( )a b n1–  (2)

where la is the length of the apical zone, lb is the length of the basal 
zone, ln is the interbranching distance, and nob is the maximal num-
ber of lateral branches the root will develop. All parameters are 
given by mean and SD.

The direction of root growth is determined according to a ran-
dom optimization process: from N small changes in root tip direc-
tion the one is chosen that best suits an objective function. This 
function describes the type of tropism used (e.g. an objective func-
tion describing gravitropism picks directional changes downwards 
and another one describing hydrotropism favours changes towards 
higher water content). Tropism is described by three parameters: 
type (defines the objective function), N (the number of trials), and σ 
(strength of changes in root direction).

Model parameterization
Simulation of a plant root system requires setting the parameters for 
each root order. Table 2 gives a list of parameters and the respective 
values used for simulation of the pea Supplementary Protocol S1 at 
JXB online.

The growth function (gf) determines the type (linear, exponential) 
of elongation with the parameter r driving the elongation rate (see 
Equation 1 for the exponential case) and sef (scale elongation func-
tion) allowing for a growth reduction scaling function. Each root axis 
is composed of an unbranched basal (lb) and apical (la) zone and the 
branching zone with laterals emerging at the set distance (ln). The 
maximum number of branches (nob) is generally set to a high num-
ber; thereby the actual number of laterals is the result of the final 
length of a root axes obtained from the elongation function and 
the interbranch distance (ln). The spatial arrangement of root axes 
in a given volume is determined by the insertion angle of branches 
on their mother axes (θ) and different types of tropism (Leitner 
et al., 2010). Root flexibility is an empirical parameter incorporat-
ing soil mechanical and plant physiological causes of tip deflection 
upon root penetration through the soil. Root biomass is not explic-
itly accounted for by the model. Indirectly it is related to the model 
parameters for axis thickness (root radius a) and root life span (rlt).

Our study uses the model to predict the ranking among genotypes 
in terms of root length, number of lateral branches, and root dis-
tribution in mature root systems. The key parameters driving root 

Fig. 1. Basic structure of simulated root axes. Basal zone, branching zone, and apical zone of a simulated root. First-order laterals are also depicted. 
(This figure is available in colour at JXB online.)

Table 2. Model parameters for simulation of pea root systems (m measured values)

Root trait class Parameter
Description

Parameter 
abbreviation

Unit Tap root First- order lateral Second-order 
lateral

Growth Initial elongation rate r cm d–1 m (see Table 5) m (seeTable 5) Equal first-order r
Growth function gf {1,2}a See scenarios See scenarios See scenarios
Phenological constraint sef – See scenarios See scenarios See scenarios

Morphology Length of basal zone la cm 0.5 0.5 0.5
Length of apical zone lb cm 2.5 2.5 –
Length between lateral 
branches

ln cm m (see Table 4) Equal tap root ln –

Maximal number of branches nob Number See scenarios See scenarios See scenarios
Spatial arrangement Distribution of interbranch 

distance
sbf – See scenarios 1 1

Branching angle θ rad – 1.05 (60°)c 1.57 (90°)c

Tropism type type {0,1,2,3}b 1 1 1
Tropism strength N 1 1.5 1 1
Root flexibility σ cm–1 0.3d 0.3d 0.3d

Biomass Root radius a cm 0.07 0.04 0.02
Root life span rlt days inf. inf. inf.

a 1 is exponential rise to maximum, 2 is linear growth.
b 0 is no tropism, 1 is gravitropism, 2 is hydrotropism, and 3 is chemotropism.
c Mean of measured root angles in the seedling root phenotyping platform.
d Default values used according to Leitner et al. (2010).
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length as a global morphological descriptor are growth (parameters 
r and gf) and branching frequency (parameter ln). The lengths of 
the non-branched basal and apical zones were set constant for all 
genotypes due to the lack of data and their minor influence on the 
final result. Two types of growth functions gf were tested: (i) linear 
growth (Scenarios 1 and 3)  and (ii) exponential rise to maximum 
(Scenario 2). For the linear growth, we used the slope of a linear 
regression fit through the two last measured time points (DAG 5 and 
7) of the seedling root data before the tap root reached the bottom 
of Petri dishes (Fig. 2).

The tap root in particular showed a decreasing elongation rate 
within 1 week of measurement in the seedling phenotyping system: 
the growth rate between days 5 and 7 was 11.6% (6.4%) lower com-
pared with the rate between days 3 and 5 (1 and 3). Thus selecting 
the final two data points of the seedling experiment is considered as 
reducing the risk of overestimating root elongation at initial stages. 
For the laterals, the length of an average single lateral root was 
calculated by dividing the total length of laterals by their number. 
A linear elongation function was fitted in Scenarios 1 and 3 to this 
lateral root of average length using the final two data points of the 
Petri dish experiment to reduce a possible bias from quick initial 
elongation rates.

If  linear growth was assumed (Scenarios 1 and 3), a new growth 
reduction function (sef), restricting elongation from a given time 
point onwards, was defined. The function assumes a linear decrease 
in growth rate over a certain time span until growth stops (Fig. 2). 
We used the appearance of first flowers as the starting time point 
and peak flowering as the time where root elongation stops (see 
Fig. 3). The maximum number of laterals along the branching zone 
(nob) was set to 1000 in Scenarios 1 and 3; this allows for a theo-
retically unconstrained root elongation—limited only by the growth 
reduction function.

In the case of  an exponential elongation rising to a maximum 
in Scenario 2, the function was parameterized including the initial 
growth and the final data point as maximum length (Fig. 2). In this 

case, nob had to be set to a value that restricts maximum root length 
to the measured target values of  the mature root systems. Using the 
exponential function assumes that including the final root length 
results in an optimum fit of  the growth pattern. Thereby we could 
compare to what extent the goodness of  fit between measured and 
simulated root length changed compared with a simulation based 
on a linear growth rate from seedling root observations combined 
with phenological constraints only. This comparison should indi-
cate whether initial growth information obtained by seedling phe-
notyping platforms is sufficient for an accurate prediction or if  
additional data points at later ontogenetic stages (with the final 
length as the hypothetical optimum information) are required for 
an appropriate parameterization of  the growth function.

Beyond assessing prediction of the overall root system size (root 
length), we also compared two architectural descriptors, namely (i) 
number of first order laterals and (ii) distribution of root length 
along the tap root. A high root length can be achieved either by high 
elongation rates or by high branching frequency. In the simulation 
scenarios, the number of first-order lateral roots along the tap root is 
the product of parameter values for interbranch distance (ln) and tap 
length resulting from the applied elongation functions.

Root length distribution over depth is essential to capture the 
capacity of cultivars with distinct root architectures to explore soil 
resources. It is a result of lateral branching frequency at different seg-
ments of the tap root, the angle of emergence between tap and lateral 
roots, and tropism influencing growth direction. For Scenarios 1 and 
2, a constant branching frequency (ln) from seedling root phenotyp-
ing was used, while for Scenario 3 a new scaling function for branch-
ing frequency (sbf) was implemented. This function modifies ln in a 
given tap root segment according to a set probability; for example, 
an sbf of 0.5 means that for ln equal to 0.1 (i.e. 10 laterals cm–1 tap 
root) the probability of emergence is only half (i.e. 5 laterals cm–1). 
Parameterization of sbf was based on mature root phenotyping data 
of lateral numbers in different tap root segments (base to 2.5  cm, 
2.5–5 cm, 5–10 cm, 10–20 cm, 20–40 cm, and 40 cm to apex).

Comparison of root angles and growth direction was not feasi-
ble due to the ex situ measurements in the mature root phenotyping 
system that essentially change these two parameters of spatial root 
arrangement. Therefore, constant values were used for branching 
angle (average of measured angles in Petri dishes), tropism strength, 
and root tip flexibility (default values from Leitner et al., 2010). Also 
for parameters related to root biomass and decay (radius, life span), 
fixed values were used or they were considered as not restricted.

Simulation scenarios
Three simulation scenarios were used to determine critical parameters 
for achieving a reliable model-based up-scaling from seedling to mature 

Fig. 2. Example of curve fitting to obtain the root elongation rate 
parameter (r) for the linear and exponential growth models. The linear 
growth is constraint to an upper limit by the time of flowering when 
further elongation is stopped. The grey-shaded area shows the time span 
between onset and peak flowering used in the elongation scaling function 
(sef) for a smooth decrease of root elongation to zero.

Fig. 3. Example for determination of peak time of flowering for an early 
and a late mature genotype with a three-parameter Gaussian curve 
(measurement points show the mean ±SD). (This figure is available in 
colour at JXB online.)
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pea root systems. Table 3 provides an overview on the tested scenarios 
and the respective measurements included in the parameterization.

The first scenario relies on seedling root data only. Root elonga-
tion is constrained by phenological information related to the onset 
and duration of flowering (i.e. a quantification of earliness of the 
respective genotypes).

The second scenario uses final root lengths—assuming that expo-
nential elongation towards measured, final values (as constraints for 
maximum root length) represents the theoretical optimum for repro-
ducing the observed root growth. This scenario thereby determines 
the relevance of improved information beyond seedling root data (i.e. 
longer phenotyping duration) to approximate root growth realistically.

Similar to Scenario 1, the third scenario simulates root elonga-
tion based on seedling data and phenological constraints. However, 
here the relevance of data on root branching acquired from more 
advanced stages (mature plants) is tested—using the final branching 
frequency data as the theoretically optimum information to param-
eterize a branch scaling function (sbf).

Statistical evaluation
Empirical root data are evaluated by ANOVA using a generalized 
linear model (SAS Version 9.4, SAS Institute, Inc., Cary, NC, USA; 
procedure PROC GLM). Parameterization of the growth func-
tions was conducted using non-linear fitting (SAS procedure PROC 
NLIN) with a Marquardt optimization algorithm. Plant breeders’ 
decision-making on genotypes to be selected for further breeding 
due to their superiority in a given target trait is generally based on 
ranking within the test population. Therefore, the Spearman rank 
correlation coefficient is used to evaluate the accuracy of simu-
lated root traits to predict the observed ranking among genotypes. 
Beyond the rank order, simulation results are also evaluated for 
accurate prediction of absolute values of observations. For this, 
Bellocchi et  al. (2010) recommended a combination of different 
evaluation statistics to ensure an unbiased judgement of the simula-
tion quality. Difference-based statistical goodness of fit indicators 
[root mean square error (RSME), percentage mean error, and index 
of agreement] were calculated by the software IRENE v.1.0 (Fila 
et  al., 2003). Regression (SAS procedure PROC REG) is used to 
evaluate the departure of predictions from a hypothetical optimum 
agreement with zero intercept and the slope following the 1:1 line 
(for slope comparison, see Sawand, 2012).

Results

Flowering phenology

The pea accessions investigated are from different origins 
with diverse whole-plant characteristics. Here we only report 

the different phenology, evidenced by the times until onset of 
flowering and peak flowering. Flowering pattern and related 
changes in root–shoot assimilate sink provide the quantita-
tive descriptor of earliness used for a root elongation reduc-
tion function. The data were obtained by fitting a Gaussian 
peak function to the number of flowers counted on each plant 
in the greenhouse; Fig.  3 exemplifies the procedure for an 
early- and late-flowering genotype, respectively.

The day of the first flower, peak flowering, as well as the 
quality of fitting are reported in Table 4. The early-flowering 
genotypes (Estonia4, Norway2, Portugal1, Portugal4, and 
Sweden2) started flowering at DAG 31. The latest genotype 
to flower was Latvia4 with the onset of flowers at DAG 48. 
Florescence was longest for genotypes Estonia2 and Sweden1, 
while the shortest florescence was noted for Portugal3 and 
Portugal4.

Root phenotyping traits

Root traits had a rather high variability, with coefficient 
of variation (CV) ranging from 77.7% (lateral root length; 
mature root systems) to 26.4% (tap root length; seedling root 
systems). Generally the CV was higher in the mature root 
phenotyping platform compared with the seedling root plat-
form. Lateral root length was most variable, while tap root 
length had the lowest CV in both platforms.

The statistical evaluation of measured root traits character-
izing length and branching demonstrates significant interac-
tion between phenotyping platforms and genotype (Table 5). 
This points to changing ranks of genotypes depending on 
phenotyping conditions and indicates that prediction of 
larger mature root systems from short-term seedling root 
observation is problematic. For example, in the seedling phe-
notyping platform, genotype Sweden1 had the longest tap 
and lateral roots, while in the mature phenotyping platform 
genotype Latvia3 featured the longest tap root and genotype 
Latvia4 had the longest total length of lateral roots. Similarly, 
Estonia1 seedlings possessed the densest lateral branching 
(i.e. lowest interbranch distance along the tap root), while 
at maturity genotype Latvia4 showed the lowest lateral root 
branching distance. Interbranch distance decreases acroped-
ally with a lateral branch distance in the first tap root segment 

Table 3. Simulation scenarios and measurement information required for parameterization

Scenario Relevance Measurement informationa

Seedling root system Mature root system

1 Prediction based on (i) seedling root data+phenological constraint for elongation by flowering 
information and (ii) seedling root data for branching.

rtap

r1st order

ln,tap

Flowering

2 Prediction based on (i) seedling+final root data for elongation with exponential rise to maximum 
without phenological constraint by flowering information and (ii) seedling root data for branching.

rtap

r1st order

ln,tap

rtap

r1st order

3 Prediction based on (i) seedling root data+phenological constraint for elongation by flowering 
information and (ii) unevenly spaced final root data for branching.

rtap

r1st order

ln,tap+sbf

Flowering

a rtap is the elongation rate of the tap root; r1st order is the elongation rate of the first-order laterals branched from a tap root; ln,tap is the length 
between lateral branches along the tap root, and sbf is the scaling function for uneven spacing (cf. Table 5 for average and first segment ln); 
flowering refers to measured times of onset and peak flowering (cf. Table 4).
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(base to 2.5 cm) of only 32.3% (seedling) and 23.4% (mature) 
compared with the average. Detailed interbranch distances in 
six intervals along the taproot are provided in Supplementary 
Table S1.

Interestingly there is a change in the role of tap root length 
versus interbranch distance in determining total lateral length 
(Fig.  4). At early-stage phenotyping, distinct elongation rates 
of the tap root obviously have constrained the length of laterals 

Table 4. Start and peak time of flowering of pea genotypes (peak flowering based on fitted three-parameter Gaussian curve, cf. Fig. 3) 
at days after germination (DAG) as observed in the mature plant phenotyping platform

Genotype Start flowering Peak flowering Fitting parameters

DAG DAG R2 P-value

Estonia1 34 41.3 0.97 0.0009
Estonia2 34 49.1 0.70 0.0488
Estonia3 38 44.3 0.93 0.0045
Estonia4 31 36.7 0.82 0.0143
Latvia1 48 58.5 0.97 0.0002
Latvia2 42 50.8 0.76 0.0547
Latvia3 42 55.8 0.93 0.0014
Latvia4 38 50.6 0.76 0.0288
Norway1 42 50.3 0.73 0.0370
Norway2 31 41.4 0.98 <0.0001
Portugal1 31 37.8 0.70 0.0276
Portugal2 34 40.8 0.71 0.0459
Portugal3 38 41.6 0.97 0.0002
Portugal4 31 33.5 0.91 0.0027
Sweden1 34 53.1 0.70 0.0502
Sweden2 31 38.0 0.72 0.0419

Table 5. Tap/lateral root length and distance between laterals along the tap root (average and first segment 0–2.5 cm) of seedling and 
mature pea root systems

Genotype Tap root length (cm) Lateral root length (cm) Interbranch distancea (cm)

Seedling Mature Seedling Mature  Seedling Mature

Estonia1 9.1 44.7 0.1 782.9 0.34 (0.14) 0.80 (0.19)
Estonia2 12.8 70.4 97.1 3114.2 0.54 (0.17) 0.70 (0.14)
Estonia3 7.7 74.7 51.2 1326.4 0.71 (0.30) 1.07 (0.13)
Estonia4 11.6 47.0 57.6 623.2 0.70 (0.18) 0.94 (0.26)
Latvia1 11.5 63.3 73.9 4072.7 0.58 (0.19) 0.80 (0.22)
Latvia2 10.9 36.4 69.5 3069.7 0.72 (0.18) 0.60 (0.13)
Latvia3 8.8 79.9 44.4 2872.4 0.59 (0.19) 0.71 (0.23)
Latvia4 11.1 52.5 96.6 5080.4 0.41 (0.11) 0.37 (0.11)
Norway1 8.5 49.8 46.4 2354.1 0.37 (0.12) 0.44 (0.12)
Norway2 6.6 58.0 34.4 2462.0 0.38 (0.17) 0.78 (0.12)
Portugal1 8.9 49.0 69.4 1685.2 0.35 (0.11) 0.73 (0.13)
Portugal2 8.5 46.8 51.8 1817.6 0.52 (0.16) 0.70 (0.17)
Portugal3 9.5 40.4 42.7 2260.7 0.69 (0.24) 0.51 (0.11)
Portugal4 10.8 77.4 65.0 764.8 0.51 (0.14) 0.96 (0.15)
Sweden1 13.5 49.8 120.2 4699.0 0.47 (0.12) 0.72 (0.21)
Sweden2 9.5 49.7 48.3 277.9 0.67 (0.24) 1.80 (0.53)
SED 0.3 3.3 2.9 179.5 0.02 0.003 0.05 0.05
CV (%) 26.4 49.2 36.6 77.7 31.2 42.1 50.5 41.8

G  0.013 <0.001 <0.001 (<0.001)
PLATFORM <0.001 <0.001 <0.001 (<0.001)
G×PLATFORM 0.009 <0.001  0.018 (<0.001)

Means are reported; SED is standard error of differences, CV is coefficient of variation. Significance level of main effects (G, genotype; 
PLATFORM, phenotyping platform) and interactions is reported by the P-value.
a Average (total number of first-order laterals divided by tap root length) and smallest (in parenthes; base to 2.5 cm to tap root) interbranch 
distances. More detailed data in six intervals along the tap root for parameterization of the branch scaling function sbf are given in 
Supplementary Table S1.
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among genotypes, while there is still no significant influence of 
interbranch distance. In contrast, our results suggest that for the 
mature root system the main factor for differences in total lateral 
root length among genotypes is the interbranch distance—the 
frequency of branching points along the tap root where laterals 
emerge—while the total tap root length has no effect.

Relationships between phenotyping platforms

The essential question arising is whether parameters obtained 
in early-stage, Petri dish-based phenotyping platforms can 
be related directly to traits of mature root systems by any 
empirical function. The significant G×PLATFORM inter-
action in Table  5 points to platform-specific expression of 
traits. Figure 5 depicts the linear regression between common 
parameters measured at both phenotyping platforms. It is 
evident that there is only a very weak relationship among root 
systems characterized at the seedling and mature stage (high-
est R2 = 0.34 for lateral root length), suggesting that direct 
inference on larger versus small mature root systems from 
an early-stage phenotyping platform is not reliable. The data 
also do not show evidence of any other non-linear function to 
relate the two phenotyping situations.

Model application

Measurement-derived simulation parameters
The growth parameters for the three simulation scenarios cal-
culated from measured root lengths of tap root and laterals 

(see Fig.  2) are given in Table  6. Interbranch distance ln is 
directly taken from measured values (Table 5), while the phe-
nological constraints for the root elongation reduction func-
tion (sef) is derived from the observed initiation of flowering 
and peak flowering dates (Table 4).

For the linear elongation function gf (Scenarios 1 and 3), 
a large variation in both tap and lateral root elongation rates 
occurred, ranging from 0.51 cm d–1 (Portugal1) to 1.30 cm d–1 
(Estonia2) for the tap root, and from 0.42 cm d–1 (Norway1) 
to 1.05 cm d–1 (Latvia2) for lateral roots.

In the exponential root elongation scenario (Scenario 2), 
root growth continued until the measured root length of 
mature plants was reached. Thus, the model requires setting 
nob to a given value calculated by dividing the measured length 
by the interbranch distance (see Table  5). In this scenario, 
genotype Sweden1 has the highest tap root growth rate while 
Norway2 has the slowest increase towards the pre-set maxi-
mum length. Exponential growth rates of laterals are great-
est/smallest for genotypes Latvia2 and Norway1, respectively. 
For lateral roots, both growth models result in similar ranking 
among genotypes (R2=0.66, P<0.001); this, however, is not the 
case between tap root growth models (R2=0.02, P=0.579)

Figure  6 provides a graphical example for two contrast-
ing pea genotypes (large versus small root system). The fig-
ure illustrates the measured data points used for deriving 
the respective root elongation parameters, modelled growth 
curves for both tap and lateral root length, as well as the 
resulting simulated seedling (DAG 7)  and mature (DAG 
82) root system architectures.

Fig. 4. Changing drivers of total lateral root length at different stages of root system development (a, b seedling root phenotyping; c, d mature root 
phenotyping). (a and c) The influence of tap root length. (b and d) The influence of interbranch distance along the tap root (means ±SD). (This figure is 
available in colour at JXB online.)
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Simulation-based prediction of mature root length
Figure 7 shows the prediction of measured root length from 
RSA simulation with the three different parameterization 
scenarios. For each scenario, examples of two simulated 
root architectures of column-grown mature root systems are 
depicted, showing a genotype with a large (Estonia3) and 
small (Latvia4) root system, respectively. In all cases, the 
model-based prediction is presented as linear regression with 
zero intercept (see Table 7 demonstrating non-significance of 
the intercept) and compared with a 1:1 line. Details on the 
statistical accuracy of the model are given in Table 7.

Scenario 1 (Fig. 7a) shows the results of mature root system 
prediction—using simulations with parameterization based 
on tap and lateral elongation functions as well as lateral root 
branching distance of seedlings. The slope of a linear regres-
sion (0.88; R2=0.95) is not significantly different from the 
1:1 line, indicating a reliable simulation-based prediction of 
mature root length from seedling root parameters.

The results of Scenario 2—including measured final 
lengths of tap and lateral roots to parameterize an elongation 
function rising exponentially to these measured maxima—are 
shown in Fig. 7b. The slope of the linear regression (R2=0.92) 
is 0.83, indicating a slightly higher underestimation of the 
observed root length.

Figure 7c depicts the result of Scenario 3, which is equal to 
Scenario 1 in regard to elongation functions, but includes a 
scaled interbranch distance of laterals along the tap root from 
final measurements to test for the importance of improved 
branching information. The predicted absolute values are 
closest to the 1:1 line, with a slope of the linear regression 
(R2=0.95) equal to 1.05. Thus, predicting the mature root 
length slightly improved when using branching density infor-
mation from later ontogenetic stages compared with utilizing 
seedling root data only (Scenario 1).

Simulation-based prediction of root architectural 
characteristics
Figure 8 shows root length distribution along the tap root for 
Scenarios 1 (seedling root data only) and Scenario 3 (improved 
interbranch distance information) compared with the meas-
ured mature root systems. Scenario 2 with the same lateral 
branching distance as Scenario 1 is not shown graphically.

The measured root systems had an average of 51.3% of 
total root length in the top 5 cm, decreasing exponentially to 
1.7% in the lowest 5 cm of the tap root. Genotype Latvia2 
allocates the highest proportion of root length in the top 5 cm 
(65.4%), while Portugal4 has the highest allocation below 
40  cm of tap root length (11.8%). The decreasing pattern 
is not reproduced accurately by simulation Scenarios 1 and 
2 with even spacing of lateral branches along the tap root. 
Here the decrease follows a linear pattern from an average of 
25.7% (Scenario 1) and 22.5% (Scenario 2) in the top 5 cm to 
3.6% and 0.8% in the lowest 5 cm, respectively. Scenario 3, 
in contrast, accurately follows the observed depth distribu-
tion with an exponential trend decreasing from an average of 
53.8% in the top 5 cm and 0.9% of total root length in the last 
5 cm of the tap root.

The relationship between observed and simulated root 
length distribution along the tap root, shown in Fig. 8, is very 
close for Scenario 3 with an R2 between 0.97 (Estonia1) an 
0.70 (Portugal1) and an average R2 of 0.85. For Scenarios 1 
and 2, in contrast, the simulations do not provide a reliable 
prediction of root distribution: in Scenario 1, R2 ranges from 
the highest value of 0.89 in Portugal1 to an R2 of <0.01 in 
Sweden1 and an average of 0.25; for Scenario 2, the respec-
tive values are 0.29 for Sweden2, <0.01 for Norway1, and an 
average of 0.12.

Figure 8 also shows that the final tap root length is generally 
not reproduced accurately by the simulation Scenarios 1 and 

Fig. 5. Relationship between root morphological (a, length of tap root; 
b, length of lateral root) and branching traits (c, interbranch distance) 
measured at seedling (agar-based phenotyping root platform; 7 d 
after germination) and post-flowering stage (large sand-filled column 
phenotyping system; 82 ± 2 d after germination). (This figure is available in 
colour at JXB online.)
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3 (R2=0.02), in contrast to Scenario 2 (R2=0.68). However, as 
suggested by the measurements (see Fig. 4b), tap root length 
has only a minor influence on final root length. In contrast, 

lateral root number appears to be a key parameter for pre-
dicting both root length (see interbranch distance in Fig. 4b) 
and distribution. Total lateral root number (measured and 

Fig. 6. Measured and simulated root growth for two pea cultivars differing in total root length (left, Latvia4 representing a dense rooting genotype; right, 
Estonia3 representing a sparsely rooted genotype). (a) Measured (DAG 1–7 in agar-based platform; DAG 82 in sand-column platform) and simulated 
tap and lateral roots; (b) Simulated root system architectures of the genotypes at early stage (DAY 7) and full root development (DAY 82), simulated with 
Scenario 1 (cf. Table 3). We notice that for lateral root elongation parameters, the average length of single laterals (cf. the Materials and Methods) was 
used, while the figure shows the total lateral length. (This figure is available in colour at JXB online.)

Table 6. Parameters driving root elongation in the linear and exponential simulation scenarios calculated from phenotyping observations

The parameter r gives growth rates in cm d–1 for the tap (rtap) and the lateral roots (rlateral). nob is the maximum number of laterals emerging along 
the branching zone of the tap (nobtap) and lateral roots (noblateral).

Genotype Linear (Scenario 1, 3)a Exponential (Scenario 2)

rtap rlateral rtap rlateral nobtap noblateral

Estonia1 0.59 0.64 1.65 0.36 131.5 13.0
Estonia2 1.30 0.89 2.25 0.48 130.4 19.5
Estonia3 1.25 0.62 1.10 0.35 105.2 18.7
Estonia4 0.97 0.70 2.03 0.38 67.1 10.6
Latvia1 1.08 0.86 1.95 0.41 109.1 30.0
Latvia2 1.14 1.05 1.92 0.54 50.6 41.3
Latvia3 1.07 0.64 1.34 0.35 135.4 24.2
Latvia4 1.46 0.81 1.82 0.36 128.0 35.0
Norway1 1.28 0.42 1.31 0.26 134.6 20.8
Norway2 0.85 0.43 1.03 0.38 152.6 31.3
Portugal1 0.51 0.59 1.65 0.35 140.0 22.7
Portugal2 0.95 0.69 1.39 0.38 90.0 23.2
Portugal3 1.18 0.66 1.62 0.27 58.6 26.8
Portugal4 0.77 0.69 1.94 0.39 151.8 8.4
Sweden1 1.20 0.92 2.50 0.52 106.0 38.7
Sweden2 0.97 0.77 1.57 0.43 74.2 7.0

a For Scenarios 1 and 3 the maximum number of branches (nob) is set to 1000, i.e. no fixed constraint on branching number is used.
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simulated values are given in Fig.  8) is best predicted by 
Scenario 3 (R2=0.86), followed by Scenario 1 (R2=0.52), and 
worst by Scenario 2 (R2=0.16).

Statistical model evaluation
Table  7 provides statistical indicators for the prediction of 
mature plant root parameters (total length, lateral numbers, 
and length distribution) from seedling root phenotyping 

information, derived either by direct comparison (linear 
regression of seedling and mature root length; see Fig. 4) or 
by model-based up-scaling according to the three selected 
scenarios (see Figs 7, 8).

All statistical indicators confirm that model-based pre-
dictions are clearly superior to direct linear inference from 
seedling root data to mature root systems. Following breed-
ers’ logic of selecting superior genotypes from a sample by 

Fig. 7. Prediction of measured total root length using the RSA model RootBox calibrated with (a) early-stage phenotyping data only and phenology as 
root elongation constraint, (b) including final tap and lateral root length for root elongation parameterization and branching frequency of laterals along the 
tap root at seedling stage, and (c) early-stage phenotyping data and phenology constraint for root elongation and uneven final branching frequency of 
laterals along the tap root. The left side shows the linear relationship (regression with zero intercept) between simulated and measured (mean ±SD) root 
length R2, slope parameter and significance (P-value). At the right, example images of simulated root systems with short (Estonia3) vs. long (Latvia4) total 
root length are provided. (This figure is available in colour at JXB online.)



976 | Zhao et al.

allocating them into, for example, four quartiles from best to 
worst trait expression (highest to lowest root length), 87.5% 
are found in a different quartile when ranking according to 
seedling versus mature-stage phenotyping; in 56.2% they 
even shift over more than one quartile. In the case of simula-
tion-based extrapolation, only 43.7% (Scenario 1; 56.3% for 
Scenario 2 and Scenario 3)  change their quartile rank and 
only 6.3% (one of 16 genotypes) shift over two quartiles.

When using more quantitative evaluation statistics, the best 
prediction in both overall root system size (total length) and 
architectural traits (lateral numbers, depth distribution) is 
provided by using a linear root elongation model with pheno-
logical constraints and including scaled branching following 
observations from the mature ontogenetic stage (Scenario 3). 
This scenario results in the best prediction of genotype ranks 
(Spearman correlation coefficient), and also absolute values 
are predicted very accurately with regression slopes close to 
the 1:1 line and intercepts non-significantly different from 
zero. Although the improvement of Scenario 3 over Scenario 
1 (with seedling root information only) is small in terms of 
total root length prediction, inference on the underlying archi-
tecture requires improved branching information. Scenario 2 
with an elongation function rising exponentially to the known 
final root length does not provide an advantage over the lin-
ear function with phenological constraint in spite of the more 
accurate reproduction of the observed tap root length.

Discussion

Phenotyping is a rapidly advancing field of plant sciences 
owing to technological progress in imaging capacity. This is 
expected to accelerate crop improvement by directly target-
ing traits relevant for yield potential and stress adaptation. 
Key requirements on phenotyping in a breeding context are 
(i) high throughput and (ii) reliable inference on crop per-
formance under in situ conditions, namely growing in field 
soil over an entire vegetation cycle (Passioura, 2012; Cobb 
et al., 2013; Walter et al., 2015). These requirements are par-
ticularly critical for roots. Breeders’ ignorance of roots has 
been partially due to the unresolved measurement bottleneck 
when facing larger screening populations growing in field soil 
where non-invasive approaches are not feasible. Therefore, 
expectations are high that novel root phenotyping platforms 
can overcome this gap.

Most root phenotyping platforms use lab-based approaches 
with plants growing over short periods of time on artificial 
media to facilitate imaging (Clark et  al., 2013; Atkinson 
et al., 2015). Shovelomics is an exception of field-based root 
phenotyping with comparatively high-throughput—targeting 
branching traits in the topsoil (Trachsel et al., 2011; Colombi 
et al., 2015). In between high-throughput platforms and tra-
ditional labour-intensive field methods (e.g. Böhm, 1979), the 
use of soil-filled columns or rhizoboxes allows for mature 

Table 7. Statistical indicators for the goodness of fit of mature root system prediction via direct inference from seedling screens  
(cf. Fig. 5) and using root architecture simulation (cf. Figs 7 and 8)

RMSE is root mean square error; correlation gives the Spearman rank correlation coefficient with P-values; slope=1:1 and intercept=0 indicate 
if slope and intercept parameters of a linear regression are significantly (P-values) different from the 1:1 line and from zero (no intercept) 
respectively.

Indicators Direct comparison Model scenario 1 Model scenario 2 Model scenario 3

Root length
RMSE (cm) 565.6 591.8 839.2 614.8
Mean error (%) 99.0 19.3 29.8 23.8
Index of agreement (–) 0.41 0.94 0.51 0.95
Correlation (RSpearman; P-value) 0.42

(P=0.099)
0.83
(P<0.001)

0.70
(P=0.002)

0.85
(P<0.001)

Slope=1:1 (P-value) <0.001 0.358 0.815 0.090
Intercept=0 (P-value) 0.123 0.115 0.507 0.455
First-order lateral root number
RMSE (n) 5.07 18.5 24.4 9.9
Mean error (%) 75.2 26.2 25.4 11.2
Index of agreement (–) 0.34 0.79 0.64 0.94
Correlation (RSpearman; P-value) 0.18

(P=0.497)
0.52
(P=0.038)

0.35
(P=0.178)

0.85
(P<0.001)

Slope=1:1 (P-value) <0.001 0.002 0.028 0.555
Intercept=0 (P-value) 0.059 0.004 0.081 0.137
Root depth distribution
RMSE (–) – 0.18 0.18 0.10
Mean error (%) – 71.2 73.8 38.5
Index of agreement (–) – 0.52 0.47 0.92
Correlation (RSpearman; P-value) – 0.25

(P=0.025)
0.20
(P=0.084)

0.74
(P<0.001)

Slope=1:1 (P-value) – <0.001 <0.001 0.001
Intercept=0 (P-value) – 0.005 0.002 0.233
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root system assessment in (semi-)natural growth media under 
greenhouse conditions (Vadez et al., 2008; Nagel et al., 2012). 
These systems show good agreement with field-grown plants 
(Kashiwagi et al., 2006), but are still restricted in throughput. 
For example, the gel-based phenotyping system ‘GrowScreen-
Agar’ used in our study allowed multiple-trait root architec-
tural assessment of all 16 genotypes in 12 replicates within <2 
weeks of experimental duration. The column system with 128 
PVC tubes involved not only longer experimental duration, 
but substantially higher work load in set-up, handling of the 
system, and parameter acquisition.

Still genotype differentiation in high-throughput seedling 
root platforms (e.g. Ruta et al., 2010; Hamada et al., 2012) 
is challenged when pointing to the inference problem beyond 
the platform environment in terms of growth media and 
ontological stage. Hargreaves et al. (2009) and Wojciechowski 
et al. (2009) demonstrated a significant G×E interaction for 
wheat and barley root length (i.e. ranking among genotypes 
changed with the phenotyping set-up). Our results for pea 
confirmed this problem of platform-specific ranking among 
genotypes for all traits measured in both systems (tap and 
lateral root length, interbranch distance). In contrast,  

Fig. 8. Architecture of measured and simulated pea root systems. Bars show the percentage distribution of root length along the tap root (measured, 
towards the left side; simulated, towards the right side with dotted bars for Scenario 1 and filled bars for Scenario 3). R2 with P-values for measured 
versus simulated distribution and number of first-order laterals is indicated for each genotype. (This figure is available in colour at JXB online.)
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Watt et  al. (2013) found a good relationship between root 
traits of young (two-leaf stage) wheat plants phenotyped on 
germination paper and field-grown plants at the same grow-
ing stage. However, in their study, the main inference prob-
lem was towards later growing stages (flowering): the seedling 
root observations did not show any correlation with mature 
root systems.

However, genetic evidence of lab-measured early root traits 
as relevant drivers for yield of field-grown crops (Tuberosa 
et al., 2002) suggests that early-stage root phenotyping data 
should still contain breeding-relevant information for whole-
plant performance. We therefore hypothesized that the fre-
quent lack of correlation between seedling and mature root 
systems is only partially related to a G×PLATFORM inter-
action, while oversimplified empirical extrapolation methods 
can be a common reason for failed attempts at root pheno-
type prediction beyond a given experimental situation. Our 
data did not suggest any empirical function that reliably 
relates the measured root traits at different stages. The dif-
ficulty of empirical up-scaling from early to late ontogenetic 
stages is also underlined by the change of tap root length 
versus interbranch distance as drivers for lateral root length: 
at early stages, tap root elongation constrains lateral length, 
while later the distance between branching points along the 
tap root becomes the main constraint. We therefore suggested 
that extrapolation between ontological stages requires taking 
the biological logics of root growth and development into 
account.

Simulation models are mathematical tools to translate 
these biological fundaments into algorithms to capture root 
formation and functioning over time under different bound-
ary conditions. Root architecture at a given time is the result 
of processes governing growth, branching, and orientation of 
root axes of different order (Fig. 9).

Root system size as expressed by the cumulative root length 
at a given ontogenetic stage is first of all governed by the 
elongation rate of single axes. Elongation involves (i) cellular 
processes of division, expansion, and differentiation (Croser 
et  al., 1999; Ubeda-Tomás et  al., 2012); (ii) phenologically 
changing whole-plant source–sink relations (Lemoine et al., 
2013); and (iii) short-term adaptive responses to environ-
mental signals, such as via osmotic adjustment and cell wall 
loosening (Hsiao et al., 1976; Davies and Zhang, 1991). The 
RootBox model used in our study sums up cellular processes 
into a global elongation function of single axes. Growth func-
tions used in plant sciences most frequently involve a pre-
set maximum, while differing in the shape to arrive at this 
end-point, such as logistic or sigmoidal growth (e.g. Morris 
et  al., 1992; Yin et  al., 2003). However, considering short-
term elongation dynamics, root axes follow a linear pattern 
(Croser et al., 1999). In our study, seedling plants elongated 
at an average rate of 1.04 cm d–1 (tap) and 0.71 cm d–1 (later-
als). Azam et al. (2013) reported values of 2.04 cm d–1 with 
temperatures higher compared with our experiment (30  °C 
versus 22 °C).

Using linear elongation over longer time spans (vegetation 
period), it is imperative to include a reduction function that 
takes into account changing assimilate allocation towards the 

roots. As shown by Thorup-Kristensen (1998) for different 
pea genotypes, root growth ceases around flowering. This 
temporal pattern was implemented into the model using a 
scaling function that progressively reduces elongation with 
the onset of flowering. Interestingly, the resulting scaled lin-
ear elongation function performed substantially better in pre-
dicting mature root length compared with a logistic growth 
function with a pre-set final length from measurements. The 
logistic Scenario 2 was substantially less accurate in pre-
dicting the number of laterals, which is a key driver of root 
length (see Fig. 4b), in spite of a more accurate representation 
of tap root length and the same interbranch distance as in 
Scenario 1. This is explained by the mathematical implemen-
tation of the logistic growth function: maximum tap length 
results from multiplying interbranch distance by the number 
of laterals along the tap root and adding apical and basal 
lengths. Using measured interbranch distances and final tap 
lengths, a calculated number of laterals (nob) is prescribed 
to parameterize the growth function (see Table 6). This obvi-
ously induced a source of error in the simulation of lateral 
numbers; for example, in three cases, prescribed nob restricted 
lateral number formation.

The constrained linear elongation approach (Scenarios 
1 and 3)  thus offers three advantages: (i) better agreement 
between simulated and measured root length by avoiding 
mathematical constraints in root number simulation (nob); 
(ii) functional consideration of the biological process of 
changing assimilate allocation driving growth termination 
at a given phenological stage; and (iii) prediction of mature 
root system size without the necessity of a previously known 
maximum axes length.

Root branching is a second main process determining the 
overall root system size. Lateral roots originate from mature 
non-dividing pericycle cells of the parent root, triggered to 
become lateral root founder cells that undergo cell division, 
elongation, and differentiation (Malamy and Ryan, 2001; 
Aloni et al., 2006). Environmental stimuli strongly influence 
whether a lateral root will emerge from a branching point or 
not (Nibau et al., 2008). Facing the complex regulation of lat-
eral branching (Atkinson et al., 2014), using a fixed branch-
ing density in an RSA model is an oversimplification of the 
architectural diversity of root systems. Including a scaling 
function, however, can describe uneven lateral branching. The 
approach is flexible and allows scaling the branching prob-
ability following empirical data or via a submodel respond-
ing to, for example, phenology, environmental signals such as 
local nutrient patches (López-Bucio et al., 2003), or mechani-
cal resistance (Tsegaye and Mullins, 1994).

Spacing between lateral branches along the tap root 
increased from an average of 0.53  cm to 0.79  cm between 
seedling and mature plants. Similar values were found by 
other authors (e.g. Tricot et al., 1997, ~0.5 cm; Rameau et al., 
2002, 0.52–0.81  cm). In a review focusing on Arabidopsis, 
Dubrovsky and Forde (2012) demonstrated that lateral 
root spacing within the branching zone is rather constant 
over plant age when considering both lateral roots and lat-
eral root primordia. Pagès and Pellerin (1994) and Ito et al. 
(2006), in contrast, described a linear increase in branching 
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distance of first-order laterals from the base to the tip of the 
tap root in mature field-grown maize, similar to our obser-
vations in mature pea roots. When excluding the lowest tap 
root segment (40 cm to tip) with an unknown length of the 
unbranched apical zone and non-emerged primordia density, 
the interbranch distance of genotypes linearly increased with 
an R2 between 0.85 and 0.99. The resulting lower number of 
laterals emerging from more apical parts of the tap root com-
pared with basal segments might be one reason for the lack of 
influence of tap root length on total lateral length in mature 
genotypes (see Fig. 4b).

While mean interbranch distance from early-stage pheno-
typing is sufficient to predict mature root length (Scenario 
1), the spatial pattern is of  high importance to predict accu-
rately the architectural shape such as depth distribution. 
An empirical scaling function (e.g. linear increase with tap 
length) could be a sufficient representation in some species 
such as pea in our study and maize (Pagès and Pellerin, 
1994). In other species, a more constant interbranch distance 
has been reported (e.g. wheat; Ito et al., 2006), while detailed 
analysis of  Arabidopsis, including lateral root primordia, 

did not suggest any regular pattern easily represented by an 
empirical function, pointing to the need to model the scaled 
branching in response to environmental stimuli (Dubrovsky 
et al., 2006).

When aiming to predict the spatial pattern of soil explo-
ration in natural field conditions, further parameters would 
be required for architectural predictions, such as the initial 
branching angle of laterals from their parent root and subse-
quent tropic responses (Evans, 1991; Mullen and Hangarter, 
2003). Although included in the RootBox model, we have not 
considered root orientation and tropism in this study because 
information on root angles was only available from the 
seedling platform. Phenotyping is able to capture the basic 
branching skeleton underlying distinct root system architec-
tures. This can be considered as the fundamental structural 
predisposition of a root system for field soil exploration, 
where it is then further modified by responding to environ-
mental signals. Understanding and modelling these ‘second-
ary’ root architectures resulting from the modified ‘primary’ 
root structural skeleton is a focus of intense physiological 
research (e.g. Palme and Teale, 2013) and studies on root–soil 

Fig. 9. From observation to simulation. (a) Image series of a pea root system at different stages; (b) major processes involved in growth and development 
towards a mature root system, and (c) their tentative representation in a root architectural model. (This figure is available in colour at JXB online.)
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interactions (e.g. Dunbabin et al., 2013), which, however, is 
beyond the scope of phenotyping.

The high prediction accuracy achieved in our study sug-
gests an important place for RSA model application within 
the plant phenotyping pipeline to bridge between platforms 
and extrapolate beyond experimental boundaries. Elongation 
and branching patterns provide sufficient input data for model 
parameterization and allow estimation of root system forma-
tion over different ontological stages. Thereby a validated 
model can add high value to high-throughput phenotyping 
platforms by scaling up early-stage observations to breeding-
relevant mature systems for subsequent in vivo and/or in silico 
testing of root functionality in target environments.

Conclusions

Seedling root phenotyping allows high-throughput screening 
of plant material. The utility for crop improvement, however, 
requires reliable inference towards the mature root system. 
The direct relationship among traits phenotyped at differ-
ent ontological stages is frequently lacking. Using a set of 
pea genotypes, we demonstrate that RSA models such as 
RootBox can overcome the apparent lack of correlation, tak-
ing into account the biological rules of root system formation 
within the model algorithms. Thereby RSA models provide 
a mechanistic extrapolation tool beyond the experimental 
boundaries. Our study proves that easily accessible root elon-
gation and branching traits from an agar-based phenotyping 
platform are sufficient for model parameterization to predict 
the ranking of fully developed root systems. We demonstrate 
that root branching information is of particular importance 
to reproduce accurately distinct root architecture underlying 
a given root system size. We conclude that RSA models are 
an integral part of a phenotyping pipeline translating high-
throughput early-stage traits into mature root system predic-
tions. Although further studies with mature root observation 
systems are necessary for validation, there is strong evidence 
that root models can largely overcome the inference problem 
of seedling root platforms. Breeding will profit from reliable 
prognosis of fully developed root systems originating from 
seedling plants to better exploit their potential in resource 
acquisition and yield.

Supplementary data

Supplementary data are available at JXB online.
Protocol S1. Matlab code for the simulation of an example 

genotype (Estonia3) using the RootBox model.
Table S1. Detailed interbranch distances along the tap root 

and their use for parameterization of the branch scaling func-
tion sbf in simulation Scenario 3.
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