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Cowpea: a legume crop for a challenging
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Abstract

Cowpea is a grain legume native from Africa and is a primary source of protein for millions of people in sub-Saharan Africa
and other parts of the developing world. The main important characteristics of this crop include a good protein quality with a
high nutritional value, its nitrogen-fixing ability, and an ability to be more drought- and heat-tolerant than most of its legume
relatives. In a research perspective, studies of cowpea are relatively scarce, despite its relevance to agriculture in the developing
world and its resilience to stress. The present review provides an overview of different aspects of cowpea, with a special emphasis
on the molecular markers for assessing genetic diversity, as well as on biochemical and transcriptomic data with respect to
evaluating cowpea drought stress tolerance. The integration of both datasets will be useful for the improvement of cowpea
because research on drought stress tolerance is of major interest for this crop in a challenging environment.
© 2017 Society of Chemical Industry
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INTRODUCTION
Cowpea [Vigna unguiculata (L.) Walp.] is a member of Leguminosae
family native from Africa and is currently one of the most impor-
tant grain legumes growing in tropical and subtropical regions.1 – 3

This legume has been used in the human diet, as well as in for-
age for animal feeding. For human consumption, the most impor-
tant product is the dry grain that can be consumed boiled, fried
(as akara) or steamed (as moi moi),4 according to different prepa-
rations, in salads, snacks and cakes, amongst others. Also, young
leaves, fresh pods and fresh seeds have been consumed in some
world regions.4,5 Green organs could be used as a vegetable and
are often served boiled, as well as being consumed fried or fresh.5

One of the most important characteristics of cowpea is the high
nutritive content value of all plant parts.3,4,6 The dry grain is rich
in proteins (23–32%), as well as essential amino acids such as
lysine (427 mg g−1 N) and tryptophan (68 mg g−1 N), although it
is low in sulphur-containing amino acids.7,8 Accordingly, cowpea
and cereals complement each other in terms of amino acids and,
consequently, a diet combining both provides a balanced protein
intake. The presence of both minerals (iron and zinc) and vitamins
(folic acid and vitamin B) has also been reported to be impor-
tant in preventing birth defects during pregnancy.3,9,10 Dry grain
is also high in fibre and low in fat.8 Taking into account these
advantages, an increase in cowpea production and consumption
in the European Union is highly desirable. Currently, the Euro-
pean Union imports almost all of the cowpea consumed from
African countries, more specifically from Niger and Nigeria. Dur-
ing the period 2009–2013, the world cowpea planting area was
5 million hectares and the worldwide production was 12 million
tonnes. Africa has been responsible for 95.4% of worldwide cow-
pea production,11 with the drier savannah and the Sahelian region
of West and Central Africa being responsible for producing 72% of
the total. Nigeria and Niger are the largest producers, with 3.4 and

1.4 million tonnes, respectively. By contrast, Europe is only respon-
sible for 0.4% of worldwide cowpea production and the European
Union has only produced 463 thousand tonnes during the period
2009–2013.11

As revealed by the major producing countries, cowpea has the
capacity to grow in low fertility soils, which is related to its ability
to establish associations with distinct microorganisms, mainly
nitrogen-fixing bacteria (e.g. rhizobia) and vesicular-arbuscular
mycorrhizal fungi. Cowpea tolerance to low fertility soils8,12,13 and
a wide range of soil pH,14 as well as the adaptation of cowpea
to high temperatures and drought,15 makes this grain legume
crop of interest for facing the predicted environmental changes
(e.g. increased temperature, reduction of water availability)
associated with climate change. The present review provides
an overview of different issues about genomic and transcrip-
tomic studies in cowpea, with an emphasis on studies related
to genetic diversity and cowpea drought stress tolerance that
could be useful with respect to integration in cowpea breeding
programs.
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Table 1. Taxonomic classification of cowpea

Species Subspecies Variety Cultivar group

unguiculata Spontanea
unguiculata unguiculata

biflora
sesquipedalis
textilis
melanophthalmus

baoulensis
burundiensis

Vigna unguiculata letozeyi
aduensis
pawekiae
dekindtiana
stenophylla
tenuis
alba
pubescens

CLASSIFICATION AND DESCRIPTION
The cowpea cultivated form obtained from the Antilles was first
described by Linnaeus as Dolichos unguiculatus L., later being
classified by Walpers as Vigna unguiculata (L.) Walp.16 This diploid
species (2n= 2x = 22) belongs to the division Magnoliophyta,
class Magnoliopsida, order Fabales, family Leguminosae, tribe
Phaseoleae, genus Vigna. The genus Vigna includes more than
80 species17 and was subdivided into six sections, namely, Vigna,
Comosae, Macrodontae, Reticulatae, Liebrechtsia and Catiang.18

Vigna unguiculata (L.) Walp. includes annual cowpeas (ssp.
unguiculata) and ten wild perennial subspecies (Table 1).19 The
subspecies unguiculata includes all the domesticated forms (var.
unguiculata), as well as the wild and weedy forms [var. spontanea
(Schweinf.) Pasquet].19,20 The domesticated forms are subdivided
into four cultivar-groups essentially based on seed and pod
characters.19,21 These cultivar-groups are unguiculata grown as
pulse, biflora (catjang) used mainly as forage, sesquipedalis (aspara-
gus bean) grown as a vegetable, and textilis cultivated for the fibres
of its long floral peduncles.19 Pasquet16 also proposed the insertion
of melanophthalmus (black-eyed pea) as another cultivar-group.

‘Cowpea’ is the V. unguiculata most popular worldwide name,
although local names such as black-eyed beans, black-eyed peas,
pink-eyes or southern peas (all used in the USA), ‘frijol caupí’ (Span-
ish speaking countries in America), ‘lobia’ (India), ‘caupi’ (Brazil),
‘caupí’ and ‘carilla’ (Spain), ‘niébé’ (French speaking countries of
Africa) and ‘feijão-frade’ (Portugal) are used.

Cowpea is described as an herbaceous warm-season annual
plant with a great variability in morphology. This crop is autog-
amous but approximately 5% outcrossing was reported in the
cultivated varieties probably as a result of insect activities.17,22

Its growth habit could be prostate (trailing), semi-prostate,
semi-erect, erect or climbing, depending not only mostly on
genotype, but also on photoperiod and growth conditions, with
the pattern of growth being determinate or indeterminate.8,23

This crop is well adapted to a wide range of soil types from sands
to heavy, including low fertility soils.24 Plants grow in an extensive
range of temperatures, with 28 ∘C the optimal temperature. Early
flowering cowpea can produce a crop of dry grain in only 60 days,
whereas longer season cowpeas may require more than 150 days
to produce mature pods, depending on photoperiod.8

According to the International Institute of Tropical Agricul-
ture (IITA) and Bioversity International (ex-International Board
for Plant Genetic Resources; IBPGR), the leaves can be classi-
fied into four categories: sub-globose, sub-hastate, globose and
hastate/lanceolate.23 Flowers emerge in alternate pairs on racemes
at the distal ends of long peduncles, with usually two flowers per
inflorescence. Flowers have a short life cycle, opening in the early
day and closing at approximately midday, after which they usually
wilt and collapse.25 Corollas can be purple, mauve–pink, yellow or
white.23 Each peduncle commonly develops two or three pods and
pods differ in size, shape, colour and texture.8 They are cylindrical,
although they could be straight, slightly curved, curved or coiled
and, when they ripe, the colour can vary from yellow to brown or
dark purple.23 The sub-species/cultivar-group Sesquipedalis (more
common in Asia) have very long green pods (40–100 cm) that are
often used as green beans (or snap beans),8 whereas the other
groups have standard pods (10–25 cm). Seeds differ in size and
colour, ranging from white, cream, green, buff, red, brown or black
and can be kidney, ovoid, crowder, globose or rhomboid and are
characteristic by the presence of an eye, as a result of the different
pigmentations encircling the hilum.23

Environmental conditions, including photoperiod and growing
conditions (temperature, rainfall, etc.), can also affect the plant
height and morphology.8,24 Cowpea root system is dense and
well-developed26 and has a beneficial effect on the structure
and tilth of the topsoil layer. Most root growth occurs within
the topsoil layer but, in drought conditions, a long taproot can
grow for reaching the deeper moisture in the soil profile.27 These
characteristics furnish cowpea plants with a high resistance to
drought in comparison with other legumes.

ORIGIN, DOMESTICATION AND DISTRIBUTION
Africa was suggested as the centre of origin of cowpea.28 This
assumption was not contested because wild cowpea plants have
been found in tropical Africa and Madagascar,1 where it was
presumably domesticated subsequent to the Neolithic age.29

Pasquet30 suggested that the most likely progenitor of domes-
ticated cowpea is V. unguiculata ssp. unguiculata var. spontanea.
For determining the precise domestication site and the cowpea
diversity centres, several studies have been performed in the last
decades, although a conclusive result has been difficult to reach.
Several hypotheses have been proposed for cowpea domesti-
cation, such as Ethiopia,1,31,32 West Africa,33 – 37 and Eastern and
Southern Africa.38 Coulibaly et al.,19 using amplified fragment
length polymorphisms (AFLPs) and morphologic data, concluded
that the wild species was originated from Eastern Africa. In this
case, domestication should have occurred in Northeastern Africa
and the domesticated plant was then probably dispersed to West-
ern Africa. According to Ng and Padulosi,39 West Africa appears to
be the centre of diversity of cultivated forms. A ‘diffuse’ domesti-
cation in the African savanna after the dispersal of cereals was also
hypothesized.1,40 This last hypothesis was presented by Harlan,41

who considered that the cowpea was domesticated in the African
Non-Center. Whatever the place of domestication, cowpea is
an ancient legume that was domesticated by African gatherers,
cultivators and farmers from its wild forms in Africa dating back to
Neolithic times.2 During the Neolithic period, the cowpea was first
introduced into India, which was then considered a secondary
centre of cowpea genetic diversity.42 The spread of cowpea in
Asia occurred at the end of Neolithic period (third millennium BC),
where the subspecies asparagus bean or yardlong (V. unguiculata
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ssp. sesquipedalis) is still cultivated for long immature pods,43 as
well as in America between the 16th and 17th centuries (AD).44

Although some reports suggest that cowpea has been cultivated
in Europe at least since the 18th century BC and possibly from
prehistoric times onward,19,45 others suggest that it was only
introduced in Europe around 300 BC, where it still remains as a
minor crop in the southern part.17 From Europe, more specifically
from Portugal and Spain, this legume was exported in the 17th
century to the New World.17,46 Another important result was
obtained by Fang et al.46 who provided evidence for the common
origin of cowpea germplasm from Asia and North America dif-
ferent from the West Africa. However, such studies have mostly
used breeding lines and, consequently, the introgression of extra
regional germplasm could have occurred. Huynh et al.,47 analysing
a worldwide collection of cowpea landraces and African ancestral
wild cowpeas by using more than 1200 single nucleotide poly-
morphism (SNP) markers, confirmed that accessions from Asia and
Europe were more related to those from western Africa, whereas
accessions from Americas appeared to be more closely related to
those from Eastern Africa.

EVALUATION OF GENETIC DIVERSITY
Cowpea has been referred as a worldwide crop with more
prevalence in tropical areas, displaying a high pheno-
typic/morphological variability.8 Genetic diversity assessment
is then useful for the preservation and utilization of germplasm
resources, as well as for the improvement of varieties/cultivars.3

Genetic diversity can be evaluated using morphological traits,
biochemical and molecular markers. Each of these markers has
different applications in several areas, such as plant breeding,
phylogenetic studies, gene mapping, genetic engineering, micro-
propagation and genetic resources characterization, and can be
used individually or combined.

Several studies have been referring the characterization of cow-
pea by morphological and quantitative traits.16,48 – 52 This charac-
terization is followed by using a set of descriptors: (i) parameters
related to plant morphology, such as growth habit, leaf type, flower
colour, seed shape and colour and (ii) parameters related to plant
production, namely the number of pods and seeds per plant and
seed weight. Morphological characterization does not require any
complex equipment or experiments, being simple and inexpen-
sive to score. These reasons explain the constant use of morpho-
logical traits as a first step for evaluating genetic relationships.
The main disadvantage is that the observed characteristics do not
exclusively reflect the genotype but, instead, reflect the interaction
between genotype and environment.53

The first biochemical markers to be used for genetic diversity
analysis were the isozyme markers in the 1960s.54 These enzymes
differ in amino acid sequence and are encoded by different genetic
loci (isozymes) or by different alleles at the same locus (allozymes),
yet catalyse the same reaction.55 Until the end of 1980s, isozymes
were the main marker used to analyse the genetic variability and
taxonomy in plants, helping to define the phylogenetic relation-
ships and population genetics. Over the years, several studies were
developed in cowpea that made use of this biochemical marker.
Panella and Gepts56 and Vaillancourt et al.57 characterized wild and
cultivated accessions of cowpea by using 10 and 26 isoenzyme loci,
respectively, and concluded that the genetic diversity in the eval-
uated collections was low. Besides isozyme markers, seed storage
protein profiling is another method used to reveal genetic varia-
tion between cowpea cultivars.58 – 62 Often, in these studies, the

obtained results were not very conclusive as a result of a lack of
domesticated cowpea and progenitor representative samples.

In comparison with morphological and biochemical markers,
DNA molecular markers have a set of characteristics that make
them ideal to several studies, such as their highly polymorphic
nature and frequent occurrence in the genome, allowing a direct
comparison of genetic material in an environmental independent
way.54,63 DNA-based molecular markers have been extensively
used in cowpea genetic diversity research, variety identification,
phylogenetic analysis, gene mapping and resource classifications
(Table 2). The first study using AFLP markers in cowpea was per-
formed by Coulibaly et al.,19 in which the genetic relationship
among a total of 117 cowpea accessions [including 47 domesti-
cated cowpeas (ssp. unguiculata) and 52 wild and weed annuals
(ssp. unguiculata var. spontanea)] was investigated. It was shown
that the wild cowpeas were more diverse than domesticated
ones, and an Eastern African origin for the wild taxon was also
suggested. This result was corroborated by Ba et al.2 using random
amplified polymorphic DNA (RAPD) markers, and by Ogunkanmi
et al.64 with single sequence repeat (SSR) or microsatellites mark-
ers. The variation within and among cowpea populations from
different agro-ecological regions and germplasm accessions has
been also evaluated using AFLP46 and RAPD markers.65 – 68 In addi-
tion, RAPD markers were used to eliminate the putative duplicates
of Senegal cowpea accessions in a germplasm bank and identify
elite varieties.69 Currently, SSR is the most frequently used molecu-
lar marker in cowpea genetic diversity analyses, namely in cowpea
landrace accessions from China, Africa and other Asian countries,70

Korea,71 Ghana,72 Southwestern Nigeria,73 and Senegal,74 where
a high genetic diversity was observed. To evaluate the genetic
diversity of asparagus bean (V. unguiculata ssp. sesquipedalis)
cultivars from different Chinese geographical origins, SSR markers
derived from V. unguiculata ssp. unguiculata sequences were used,
confirming the transferability of SSR markers between these two
subspecies.75 In all of these studies, SSR markers also showed
sufficient genetic variance that could be useful for improvement
strategies in cowpea. SNP markers have gained an increasing
importance because of their bi-allelic nature, higher frequency
in the genome than SSRs and other markers, and their easily
automated genotyping.76 In a study of the characterization of
113 cowpea accessions, comprising 108 from Ghana and five
from abroad, 458 SNPs (out of 477) showed high polymorphism.77

These results suggest an unexpected high level of heterozygosity.
The chip-based SNP detection technology is being widely used in
plant genetic applications.78 – 80 In cowpea, Illumina chip-based
SNP detection platforms (GoldenGate and more recently iSelect;
Illumina, San Diego, CA, USA) have been developed and are prov-
ing very useful for molecular characterization,77,81 genetic diversity
analysis47,82 and genetic mapping.43,83 – 85 Researchers at the Uni-
versity of California, Riverside, in partnership with institutions from
several African countries, have designed a 60 000-assay iSelect
BeadArray for cowpea that successfully assayed 51 128 SNPs.86

The combined use of different molecular markers could better
assist the evaluation of genetic diversity. Diouf and Hilu87 used a
combination of RAPD and SSR markers to assess genetic variabil-
ity of local cowpea varieties and breeding lines from Senegal and
identified 12 polymorphisms as a result of the broad genome cov-
erage used. Combinations of AFLP and SAMPL (selectively ampli-
fied microsatellite polymorphic locus) markers,88 as well as AFLP
and SSR markers,89 were used to determine the genetic varia-
tion within and among closely related V. unguiculata accessions,
whereas the combined use of RAPD and ISSR markers allowed the
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Table 2. DNA-based molecular markers that have been used for specific cowpea studies

Molecular marker Sub-species Objective Reference

AFLP V. unguiculata ssp. unguiculata Markers linked to cowpea parasitism
resistance

Ouédraogo et al. (2001)153

V. unguiculata ssp. unguiculata
V. unguiculata ssp. spontanea

Phenetic organization and genetic diversity Coulibaly et al. (2002)19

V. unguiculata ssp. unguiculata Genetic diversity Fang et al. (2007)46

V. unguiculata ssp. unguiculata Markers linked to cowpea golden mosaic
virus

Rodrigues et al. (2012)154

RFLP V. unguiculata ssp. unguiculata Vigna
radiata

Markers linked to orthologous seed weight
genes

Fatokun et al. (1992)155

V. unguiculata ssp. unguiculata Markers linked to aphid resistance gene Myers et al. (1996)156

V. unguiculata ssp. unguiculata Diversity of indigenous bradyrhizobia Krasova-Wade et al. (2003)157

V. unguiculata ssp. unguiculata Markers linked to genotypic and
phenotypic responses to seedling-stage
drought

Muchero et al. (2008)100

RAPD V. unguiculata ssp. unguiculata Genetic diversity Fall et al. (2003)69

V. unguiculata ssp. unguiculata Genetic relatedness and gene flow Nkongolo (2003)158

V. unguiculata ssp. unguiculata
V. unguiculata ssp. Spontanea

Genetic diversity Ba et al. (2004)2

Vigna unguiculata ssp. unguiculata Genetic diversity Zannou et al. (2008)65

V. unguiculata ssp. unguiculata
Phaseolus vulgaris

Genetic diversity and markers linked to
cowpea resistance to pests weevil pests

Abdel-Sabour et al. (2010)159

V. unguiculata ssp. unguiculata Genetic diversity Malviya et al. (2012)66

V. unguiculata ssp. unguiculata Genetic diversity Prasanthi et al. (2012)67

V. unguiculata ssp. unguiculata Genetic diversity Patil et al. (2013)68

SSR V. unguiculata ssp. unguiculata
V. unguiculata ssp. dekindtiana var.

pubescens

Genetic diversity and relationships Li et al. (2001)105

V. unguiculata ssp. unguiculata Genetic diversity Xu et al. (2007)70

V. unguiculata ssp. dekindtiana
V. unguiculata ssp. ovata
V. unguiculata ssp. kgalagadensis
V. unguiculata ssp. rhomboidea
V. unguiculata ssp. Pubescens
V. unguiculata ssp. mensensis
V. unguiculata ssp. grandiflora
V. unguiculata ssp. Congolensis

Genetic diversity Ogunkanmi et al. (2008)64

V. unguiculata ssp. unguiculata Genetic diversity Lee et al. (2009)71

V. unguiculata ssp. unguiculata Genetic diversity Asare et al. (2010)72

V. vexillata
V. umbellate
V. glabrescens
V. aconitifolia
V. trilobata
V. angularis
V. radiata
V. radiata
V. radiate var. setulosa
V. radiate var. sublobata
V. mungo
V. mungo var. Silvestres

Genetic diversity and SSR transferability
between Vigna species

Gupta and Gopalakrishna (2010)160

V. unguiculata ssp. unguiculata Genetic diversity of cowpea cultivars
resistant to Striga gesnerioides

Sawadogo et al. (2010)101

V. unguiculata ssp. sesquipedalis
V. unguiculata ssp. unguiculata

Genetic diversity and SSR transferability
between sub-species

Xu et al. (2010)75

V. unguiculata ssp. unguiculata Genetic distance and diversity Adewale et al. (2011)48

V. unguiculata ssp. unguiculata Genetic map and identification of QTLs Andargie et al. (2011)96

V. unguiculata ssp. unguiculata Markers linked to Yellow Mosaic Virus
Resistance genes

Gioi et al. (2012)161

V unguiculata ssp. unguiculata SSR transferability to other Vigna species Bansal et al. (2012)162

V. unguiculata ssp. unguiculata Genetic diversity Badiane et al. (2012)74

V. unguiculata ssp. unguiculata Genetic diversity Adetiloye et al. (2013)73
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Table 2. DNA-based molecular markers that have been used for specific cowpea studies

Molecular marker Sub-species Objective Reference

AFLP V. unguiculata ssp. unguiculata Markers linked to cowpea parasitism resistance Ouédraogo et al. (2001)153

V. unguiculata ssp. unguiculata Genetic diversity Ali et al. (2015)163

SNP V. unguiculata ssp. unguiculata Consensus genetic linkage maps Muchero et al. (2009)83

V. unguiculata ssp. unguiculata
Glycine max

Linkage mapping and synteny to other
legumes

Lucas et al. (2011)84

V. unguiculata ssp. unguiculata Markers linked to resistance to foliar thrips Lucas et al. (2012)104

V. unguiculata ssp. unguiculata
V. unguiculata ssp. dekindtiana

Gene pool structure
Phylogenetic relantioships

Huynh et al. (2013)47

V. unguiculata ssp. unguiculata Markers linked to seed size Egbadzor et al. (2013)99

V. unguiculata ssp. unguiculata Genetic diversity Egbadzor et al. (2014)52

V. unguiculata ssp. unguiculata Genetic mapping and synteny of aphid
resistance

Huynh et al. (2015)164

V. unguiculata ssp. unguiculata Genetic diversity and population structure Xiong et al. (2016)82

V. unguiculata ssp. spontanea Consensus genetic map Muñoz-Amatriaín et al. (2016)85

V. unguiculata ssp. spontanea
V. unguiculata ssp. sesquipedalis Pod length QTLs Xu et al. (2016)165

evaluation of genetic variations of seven Vigna species.90 A com-
bination of molecular and classical markers has been considered
essential for making the results of genetic diversity more reason-
able with respect to genetic cowpea breeding and the evaluation
of germplasm resources.3 The combined use of molecular mark-
ers (SSR and ISSR) and classical markers (morphological traits) was
described to estimate the genetic diversity and relatedness of 23
asparagus bean (V. unguiculata ssp. sesquipedalis) accessions and
seven accessions of a hybrid between cowpea (V. unguiculata ssp.
unguiculata) and dwarf asparagus bean in Thailand.91 Morpho-
logical characters were diverse among most accessions, although
their exclusive use did not allowed a distinction between acces-
sions. Indeed, ISSR markers showed higher efficiency for estimat-
ing the levels of genetic diversity and relationships among the two
subspecies than SSR markers.91 The combined use of morpholog-
ical traits, RAPD and ISSR markers was also employed for discrim-
inating landraces of cowpea scattered from all Algeria regions,92

as well as for evaluating the genetic variability and relationships
between two cowpea cultivars and nine elite genotypes.93 Both
studies showed that ISSR markers were better linked to morpho-
logical variation than RAPD markers.

Genetic mapping and marker-assisted selection
Currently, the construction of the cowpea genetic map is mainly
based on the use of efficient molecular markers, such as SSR
and SNP, which show sufficient genetic variability.43,83,84,94 – 97

A consensus genetic linkage map using expressed sequence
tag-derived SNPs led to the integration of 928 markers into a
cowpea genetic map spanning 680 cM with 11 linkage groups
(0.73 cM of average marker distance).98 A significant macrosyn-
teny with Glycine max and Medicago truncatula genomes was
reported, as well as some microsynteny with Arabidopsis thaliana
genome. The first genetic map of asparagus bean based on SNP
and SSR markers was reported by Xu et al.43 This map consisted of
375 loci mapped on 11 linkage groups, with 191 loci detected by
SNP markers and 184 loci by SSR markers. The development of a
high-density genetic map offers a powerful tool for analysing the
inheritance of target genes, as well as monitoring specific genes
or genomic regions transmitted from parents to progeny.3 Using
the recently developed Illumina iSelect genotyping assay for

cowpea, Muñoz-Amatriain et al.85 genotyped five biparental
recombinant inbred lines (RIL) populations and developed a
consensus genetic map containing over 37 000 SNPs mapped
to approximately 3200 bins in 800 cM. These results are being
used to genetically anchor an initial whole-genome shotgun
assembly of the cowpea accession IT97K-499-35. To this assembly,
sequences from approximately 4000 minimal tiling path bacterial
artificial chromosomes (BAC) are being incorporated with the
aim of increasing the number of anchored scaffolds and helping
resolve the order within recombination bins.

The biotechnology based on such genetic maps and the use of
DNA markers brings great hope to cowpea breeding because spe-
cific molecular markers could be used to select target traits with
marker assisted selection (MAS).17 The association of 18 SNPs with
seed size in cowpea varieties from Ghana suggested that these
molecular markers could be useful for marker assisted breeding
of larger seeded cowpea plants.99 Performing a RFLP analysis of
29 polymorphic markers among 14 drought-tolerant genotypes,
it was possible to find a correlation between seven RFLP markers
and different drought-related cowpea phenotypes.100 The addi-
tional use of other high-density DNA markers in the genome could
speed up the selection process in breeding programs even more.
For breeding to resistance to the parasitic weed Striga gesnerioides,
SSR101 and AFLP102,103 markers have been used. Similarly, SNPs
have been used to identify markers associated to cowpea resis-
tance to foliar thrip.104 The asparagus bean rust disease, caused
by the fungus Uromyces vignae, was also associated with a spe-
cific AFLP marker that can now be effectively used for MAS.105

Sequencing and analysis of the gene-rich hypomethylated portion
of the cowpea genome was performed by Timko et al.106 More than
250 000 gene-space sequences reads were generated, thus provid-
ing a source of functional markers for detailed comparative studies
of cowpea with other plant species and positional cloning of key
genes of agronomic interest.

TOLERANCE TO DROUGHT STRESS
Drought is one the most severe environmental stresses with
major impact on plant development and productivity thus caus-
ing serious agricultural yield losses.107,108 Drought tolerance is
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a complex trait defined as the ability of plants to live, grow
and reasonably produce with limited soil water supply or under
periodic water deficiencies.109 Mitra110 grouped the plant mecha-
nisms used to cope with drought stress into three groups: drought
escape, drought avoidance and drought tolerance. Crop plants
could use more than a single mechanism to cope with drought
stress. One of the most important food legumes in tropical and
sub-tropical regions, where drought is a major constraint for pro-
duction as a result of low and erratic rainfall, is cowpea. Indeed,
some studies noted cowpea to be one of the most tolerant crops
to drought as a result of its capacity to grow in areas with no irri-
gation facilities and irregular rainfall.24,111 – 113 This tolerance has
been attributed to the three drought tolerance mechanisms,112

although several drought avoidance mechanisms were exten-
sively described, including deep rooting, strong stomatal sensitiv-
ity, reduced growth rate, leaf area reduction, delayed leaf senes-
cence, hastened or delayed reproductive cycle, osmotic adjust-
ment and sensitive moisture remobilization to the upper leaves
and growing tips.109,113 Because cowpea has the ability to tolerate
severe drought conditions and displays a relatively small nuclear
genome size (estimated at approximately 620 Mb), this legume
has been considered as an ideal model for studying the molecular
mechanisms of drought tolerance in crops.112

Morphological, biochemical and physiological traits
for drought
Changes of morphological, biochemical and physiological traits
in response to drought stress for several V. unguiculata cultivars
have been reported.114 – 117 The root system or rooting pattern
are closely related to drought-tolerance mechanisms in legume
crops.118,119 To evaluate and screen cowpea drought-tolerance,
several parameters of the root system have been used, such as
root length density, rooting depth and root dry matter.119 To
examine cowpea drought tolerance ability, water potential, rela-
tive turgidity, diffusion pressure deficit, chlorophyll stability index
measurements or carbon isotope discrimination are typically
evaluated.109,120 However, most of these methods have the dis-
advantage of being slow, laborious, expensive and influenced by
environmental conditions.109,112 Slabbert et al.114 tested and pro-
posed other methods that screen cowpea for drought tolerance,
such as proline accumulation, 2,3,5-triphenyltetrazolium chloride
assays, cell membrane stability, relative water content, leaf water
potential, leaf area, chlorophyll a and b contents, chlorophyll
fluorescence, carotenoids content, evaluation of anti-oxidative
responses through enzyme activities determination [superox-
ide reductase, glutathione reductase (GR), ascorbate peroxidase
(APX)], as well as the early drought screening at the seedling stage
(wooden box technique). Altogether, these methods pretend to
evaluate the most typical changes that occur in plants after a
drought imposition.

Because the complex regulatory processes of drought adap-
tation involves the control of water flux and cellular osmotic
adjustments via the biosynthesis of osmoprotectants,108 the
determination of such compounds has often been used for
screening tolerant cowpea genotypes. The osmoprotectants are
classified into three major groups: amino acids (e.g. proline),
polyol/sugars (e.g. trehalose, fructans, mannitol) and quaternary
amines (e.g. glycine betaine).121 – 123 However, these compounds
do not accumulate in all plant species in sufficient amounts to
avoid adverse effects of drought stress.122,124 Studies in drought
stress cowpea and osmoprotectants are still scarce. However, the

application of chitosan in drought stress cowpea plants has been
described to allow the maintenance of osmotic balance.125

Physiological changes related to photosynthesis and stomatal
conductance have also been frequently used in drought evalu-
ation studies. Indeed, one of the processes largely affected by
water deficit is photosynthesis as a result of a decline of stomatal
conductance that limits the carbon assimilation, as well as bio-
chemical and photochemical adjustments.126,127 The dynamics
of photosynthesis (A), stomatal conductance (gs) and intrinsic
water-use efficiency (WUE=A/gs) were evaluated in 14 cowpea
genotypes over a period of drought and post-stress.128 Under
water stress conditions, a decrease in photosynthesis and stom-
atal conductance accompanied by an increase in the intrinsic
water-use efficiency was detected in all genotypes, although
differences between genotypes were found.128 When cowpea
genotypes differing in drought resistance were subjected to
three distinct water stress conditions (unstressed, moderate
and severe stressed), an increase in root biomass and a reduc-
tion in chlorophyll content were detected with water stress
imposition.115

One of the main regulators of plant drought tolerance is
the abscisic acid (ABA) that, not only regulates many essential
processes of plant development, including the inhibition of
germination and control of stomatal closure, but also several
adaptive responses to a variety of environmental stresses.129,130

Kulkarni et al.,131 studying the response of six cowpea cultivars
to drought stress, suggested that the intrinsic capacity for ABA
synthesis could play an important role in regulating stomatal con-
ductance. ABA accumulation is higher in drought-stressed plants
than in unstressed plants.112 In cowpea, some studies have been
developed aiming to understand the role of ABA in the drought
tolerance.132,133

Because membranes are the key targets of degradative pro-
cesses induced by drought, membrane integrity parameters have
also been used for assessing drought stress severity. A decrease
in membrane lipid content was reported under water stress,134

which appears to be correlated to the inhibition of lipid biosyn-
thesis and stimulation of lipolytic and peroxidative activities.135,136

The degradation of membrane lipids and the enzymatic antiox-
idant activity appears to be a useful method for evaluating the
level of plant drought stress. However, data are still scarce in
cowpea.111,114,136 – 138

Agbidoco et al.112 suggested that the most suitable parameters
for screening a large number of cowpea lines for drought tol-
erance are the measurements of chlorophyll fluorescence, stom-
atal conductance, ABA and free proline levels. Besides these
parameters, the wooden box screening for drought tolerance
at the seedling stage and delayed leaf senescence could be
interesting with respect to evaluating and determining drought
tolerance. Physiological, biochemical and agronomic responses
to water deficit at the flowering stage of cowpea detected an
increase of canopy temperature and proline content, as well as a
decrease of gaseous exchanges and starch content, that eventually
affected the yield components with the exception of seed number
per pod.139

The knowledge transfer between plant species and cultivars
should be taken with care because differences in drought toler-
ance were detected when evaluating distinct plant species or cul-
tivars. For example, a comparison of physiological responses to
drought between V. unguiculata and Phaseolus vulgaris demon-
strated that both species significantly differ in the responses eval-
uated by leaf gas exchange parameters.140
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Table 3. Genes identified as being involved in drought tolerance in cowpea

Gene designation Code number Gene function Author

CPRD8 D83970 Response to dehydration stress Iuchi et al. (1996)42

CPRD14 D83971 Response to dehydration stress Iuchi et al. (1996)142

CPRD22 D83972 Response to dehydration stress Iuchi et al. (1996)142

CPRD12 D88121 Response to dehydration stress Iuchi et al. (1996)143

CPRD46 D88122 Neoxanthin cleavage enzyme involved in ABA
biosynthesis

Iuchi et al. (1996)143

VuNCED1 AB030293 9-Cis-epoxycarotenoid dioxygenase involved in a key
step of ABA biosynthesis

Iuchi et al. (2000)132

VuABA1 AB030295 Zeaxanthin epoxidase involved in early step of ABA
biosynthesis

Iuchi et al. (2000)132

VuPLD1 U92656 Putative phospholipase D, a major lipid-degrading
enzyme in plant

El-Maarouf et al. (1999)135

VuPAP-𝛼 AF165891 Putative phosphatidate phosphatase, important for
the enzymatic cascade leading to membrane lipid
degradation under environmental stresses or
senescence

Marcel et al. (2000)145

VuPAP-ß AF171230 Putative phosphatidate phosphatase, important for
the enzymatic cascade leading to membrane lipid
degradation under environmental stresses or
senescence

Marcel et al. (2000)145

VuPAT1 AF193067 Galactolipid acyl hydrolase involved in membrane
degradation induced by drought stress

Matos et al. (2001)136

VuC1 AF278573 Protein inhibitor of cysteine proteinase belonging to
the papain family

Diop et al. (2004)146

dtGR DQ267474 Dual-targeted glutathione reductase, a key enzyme
involved in detoxification of AOS

Contour-Ansel et al. (2006)138

cGR DQ267475 Cytosolic glutathione reductase, a key enzyme
involved in detoxification of AOS

Contour-Ansel et al. (2006)138

VucAPX U61379 Cytosolic ascorbate peroxidase, a key enzyme
involved in detoxification of AOS

D’Arcy-Lameta et al. (2006)111

VupAPX AY466858 Peroxisomal ascorbate peroxidase, a key enzyme
involved in detoxification of AOS

D’Arcy-Lameta et al. (2006)111

VusAPX AY484493 Stromatic ascorbate peroxidase, a key enzyme
involved in detoxification of AOS

D’Arcy-Lameta et al. (2006)111

VutAPX AY484492 Thylakoidal ascorbate peroxidase, a key enzyme
involved in detoxification of AOS

D’Arcy-Lameta et al. (2006)111

GST Glutathione-S-transferase, a well-recognized
stress-related gene

Gazendam and Oelofse (2007)148

PR-1 Pathogenesis-related-protein-1, a well-recognized
stress-related gene

Gazendam and Oelofse (2007)148

VuNSR4 ABA55727.1 Digalactosildiacilglicerol sintase 1 Silva et al. (2012)149

VuNSR10 AAC49405.1 Kinase protein calcium dependent Silva et al. (2012)149

VuNSR44 BAA13541.1
BAA12161.1

CPRD12 protein
CPRD12 protein

Silva et al. (2012)149

VuNSR47 BAA12160.1 CPRD8 protein (‘old yellow’ enzyme) Silva et al. (2012)149

VuNSR49 BAB11932.1 CPRD65 protein Silva et al. (2012)149

Drought tolerance genes
Transcriptomic studies have been developed to identify genes,
pathways and processes important in controlling plant response
to multiple abiotic or biotic stresses, thus providing candi-
date targets for stress tolerance improvement.141 Many cowpea
drought-related genes have been deduced from previously rec-
ognized candidate genes for drought tolerance in other related
species, and were subsequently confirmed by their differential
expression in drought-stressed versus non-stressed cowpea
plants. On the other hand, studies of the differential expression of
cowpea genes in experimental plants subjected to different levels
of water privation have led to the identification of cowpea genes
involved in drought responses.112

Many cowpea genes are now recognized as being involved
in drought responses (Table 3). Using a differential screening
method, Iuchi et al.142 isolated 24 cDNA clones that corre-
sponded to dehydration-induced genes from a cowpea variety
(IT84S-2246-4) displaying a high drought tolerance. These
cDNA clones represented ten different genes, nine of which
were specifically induced by dehydration stress. Five of these
drought-associated genes were characterized further (CPRD8,
CPRD14, CPRD22, CPRD12 and CPRD46),142,143 followed by a
description of two additional drought-inducible genes all from
the same cowpea variety (VuNCED1 and VuABA1).132 VuNCED1
encodes a 9-cis-epoxycarotenoid dioxygenase that catalyses a
key step in ABA biosynthesis, whereas VuABA1 encodes a zeaxan-
thin epoxidase132 involved in another important key step of ABA
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biosynthesis. Indeed, zeaxanthin epoxidase has been reported
as being required for resistance to osmotic and drought stress,
ABA-dependent stomatal closure and regulation of the expression
of stress-responsive genes.144

According to the degradation of membrane lipids that occur
under drought stress conditions,134 several other cowpea
drought-related genes are recognized to be involved on lipid
metabolism. El-Maarouf et al.135 isolated and characterized the
cowpea VuPLD1 gene that encodes a phospholipase D, which is
the main enzyme responsible for the drought-induced degrada-
tion of membrane phospholipids. In a drought stress susceptible
cultivar, phospholipase D activity and VuPLD1 expression were
highly stimulated by drought stress, whereas they remained
unchanged in a tolerant cultivar.135 From the leaves of the same
cultivars, Matos et al.136 isolated a VuPAT1 (putative patatin-like)
gene that encodes for galactolipid acyl hydrolase. A rapid increase
of VuPAT1 expression was also observed in the susceptible cultivar
under drought conditions, whereas the tolerant exhibited lower
levels of transcripts. These results suggest that drought stress in
cowpea stimulates the hydrolysis of galactolipids, which are the
main components of chloroplast membrane. VuPAP-𝛼 and VuPAP-ß
are two cDNAs encoding putative phosphatidate phosphatases
(PAPs) that were cloned from cowpea leaves by Marcel et al.145

PAPs play a role in the enzymatic cascade that leads to membrane
lipid degradation under environmental stresses or senescence.137

Marcel et al.145 revealed that gene expression of VuPAP-𝛼 remained
very low during drought treatments, being strongly stimulated
after rehydration. On the other hand, VuPAP-ß expression did not
vary in plants submitted to water stress by withholding irrigation,
although it increased rapidly in air desiccated leaves.

Metabolic and adaptive processes, in which the adaptation to
drought stress is included, comprise the regulation of protein
degradation via the use of protease-specific inhibitors146 and cel-
lular protection against oxidative damage through the regula-
tion of anti-oxidant enzymes and free radical scavengers.147 The
expression of cowpea cystatin (cowpea leaf protease inhibitor;
VuCI) gene, evaluated at mRNA (Northern analysis) and protein
(Western analysis) levels, suggested that two cystatin transcripts
producing two distinct polypeptides would lead to a multiplicity
of forms related to multiple biological roles.146

A noticeable activation of cowpea antioxidant metabolism
has been detected under progressive water stress by study-
ing drought-related genes. The cloning and sequencing of
two new cDNAs encoding a putative dual-targeted (dtGR) and
a cytosolic (cGR) GR from cowpea leaves was performed by
Contour-Ansel et al.138 The expression of both genes in cow-
pea leaves of drought-sensitive and drought-tolerant plants
subjected to different drought stress conditions revealed that
up-regulation of cGR expression is directly related to the intensity
of stress in both cultivars, although dtGR expression was different
in susceptible and resistant cultivars. The results revealed the
participation of GR in drought responses of both cowpea culti-
vars, which, in susceptible cultivar, involves both GR genes.138

The expression of other antioxidant enzyme genes (ascorbate
peroxidases; APX) was also studied in the cowpea response to
progressive drought, rapid desiccation and application of exoge-
nous ABA. Four new cowpea cDNAs encoding putative cytosolic
(VucAPX), peroxisomal (VupAPX), chloroplastic (stromatic VusAPX)
and thylakoidal (VutAPX) ascorbate peroxidases were isolated
and characterized.111 When the expression levels of VucAPX and
VupAPX were followed in drought-tolerant and sensitive culti-
vars, an increase in steady-state transcripts levels was observed

in response to rapid water loss and exogenous ABA treatment
in drought-sensitive cultivar, whereas no significant changes in
drought-tolerant cultivar were registered. Also, the VusAPX gene
expression was strongly stimulated at low levels of water stress in
drought-tolerant cultivar. The higher expression of all these genes
in tolerant cultivars, compared to sensitive ones, again suggested
that cowpea is a drought-tolerant species compared to other
crops, indicating that even the more sensitive cultivars have some
level of resistance to water deficits.111 Two other well-recognized
stress-related genes, GST (glutathione-S-transferase) and PR-1
(pathogenesis-related-protein-1), were identified in cow-
pea by suppression subtractive hybridization (SSH) using
drought-tolerant and susceptible lines.148 Silva et al.149 followed
the effect of drought and heat stresses on cowpea nodules by
evaluating the differential gene expression, using a cDNA-AFLP
approach, and identified 14 differentially expressed nodule
stress responsive genes. These genes are involved in different
metabolic processes, five (VuNSR4, VuNSR10, VuNSR44, VuNSR47
and VuNSR49) of which were related with the nodule protection
under abiotic stress conditions as revealed by their expression
levels.149

MicroRNA drought regulation
MicroRNAs (miRNAs) regulate gene expression at the
post-transcriptional level through the recognition of target RNAs
by almost perfect base complementary. Several functional anal-
yses have demonstrated that miRNAs are involved in a variety of
plant developmental processes and play important roles in plant
resistance to abiotic and biotic stresses.150,151 From two cowpea
genotypes, one drought-tolerant and another drought-sensitive,
157 miRNAs were identified, 44 of which were drought-associated,
with 30 being upregulated and 14 downregulated in drought
conditions. Cowpea miRNAs from leaves and roots of plants sub-
jected to drought treatment were also identified and validated by
a real-time-quantitative polymerase chain reaction.152 The results
demonstrated that the same miRNAs in different tissues respond
differently to drought stress. Both studies suggest that miRNAs
could play an important role in cowpea response to drought stress
by regulating the expression levels of drought-related genes.

CONCLUSIONS
Global climate changes have an enormous impact on plant diver-
sity patterns with significant current negative effects. In Europe, it
is the Mediterranean countries where a higher impact of climate
changes is expected, including an increase in drought, high tem-
peratures and water scarcity. Drought is a critical constraint for
agricultural production yield, which is currently expanding world-
wide and affecting an increased number of countries. New strate-
gies are thus required to overcome this major challenge in agri-
cultural production systems, such as the development of new
farming systems and the use of undervalued crop varieties. As a
result of its natural tolerance to water scarcity conditions and high
temperatures, cowpea could be considered as a valued crop for
increasingly drought scenarios. Besides drought tolerance, cow-
pea also presents high levels of protein and the capacity to estab-
lish symbiotic associations with distinct microorganisms (mainly
rhizobia and mycorrhizal fungi) that turn it into an environmen-
tally friendly crop. This legume could also be a useful plant model
for understanding the mechanisms involved in drought tolerance.
The existence of several cowpea varieties and cultivars, display-
ing different tolerance levels to drought conditions, provides an

wileyonlinelibrary.com/jsfa © 2017 Society of Chemical Industry J Sci Food Agric (2017)



Cowpea for a challenging environment www.soci.org

excellent germplasm resource for identifying new candidate genes
involved in the responses to drought stress tolerance and also for
use in future breeding programmes. DNA molecular markers have
shown to be a good tool for germplasm evaluation and the selec-
tion of the most interesting drought stress/tolerant genotypes.
Because MAS can facilitate the selection of elite germplasm and
accelerate plant breeding programs, the identification of the pre-
cise position of drought-related known genes and of new candi-
date genes should be carried out. Integration of data from phe-
notype, biochemical and molecular characterization will help to
clarify the resilience and resistance of cowpea under drought
and provide sufficient cowpea knowledge for the development of
drought-tolerant varieties. For these reasons, cowpea can also be
an important plant model for the development of other crop vari-
eties that are more drought tolerant.
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